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Preface

The most primitive of herdsman used a pouch of stones to keep
track of the number of sheep he had in the field. As each sheep
would enter the field the herdsman would place a stone in a pile.
As the sheep would leave the field the herdsman would place the
stones back into the pouch. If there were stones left on the ground
then some sheep were missing. I there were no stones left and
no sheep left then all was well with the herd. And if there were no
more stones but there were more sheep then somehow the herdsman
picked up a ewe or two.

This correspondence between pouch stones and sheep is one of
the most primitive forms of counting known. In today’s language
this is known as a one-to-one correspondence, or a bijection between
pouch stones and sheep. This kind of counting is continued today
when we make an attendance sheet. Each name on the sheet cor-
responds to exactly one child in the class, and we know some child
is missing if he/she does not respond to his/her name. A more
important correspondence is found in the grocery store. There we
associate a certain number called a price with each item we put
in our cart. The items in the cart correspond to a number called
the total price of the cart. When we compare our receipt with the
objects in the cart we are imitating the sheep herdsman’s pouch
stones.

1X
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Believe it or not, mathematicians count like the primitive herds-
men. The number 1 is all sets that match up in an exact manner
to the set {e}. Thus we say that card({e}) = 1, and we say that
card({*}) = 1. The number 1 becomes all that we associate with
one element.

We use the convenient symbol 1 to denote all possible sets that
match up perfectly with {e}. The symbol 1 is convenient because
it is what we have been taught all these years. The number 2 is
defined to be all of those sets that match up perfectly with {e, }.

card({e, x}) = 2.

This is 2 because we define it that way. It agrees with our training.
It represents all possible sets that match up exactly with the set
{e,x}. This is exactly what you have been taught.

Next up is what we mean by matches up perfectly. This is the
bijection we alluded to earlier. Sets A and B are called equivalent if
there is a bijection between them. That is, they match up perfectly.
In other words, there is a way of matching up elements between A
and B, called a function or bijection

f:A— B
such that

1. different elements of A are mapped to different elements of B,
and

2. each element of B is associated with some element of A.

For finite sets this bijection can be drawn as a picture. Let A =
{ay,a2,a3} and let B = {b1,by,b3}. Then a bijection between A
and B is

ay — b
ag —— by
az bg.

Here is another such bijection.
ay —— b3

ay +—— by
az bl.
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You see, the bijection you choose does not have to respect the sub-
scripts. These mappings are bijections because as you can see the
elements ay are sent to different elements b,. Also each element in
B is associated with an element in A. That is exactly how mathe-
maticians count elements in sets.

An impressive extension of this idea is that we can count infinite
sets in the same manner, but you must use different symbols to
denote card(A). We let

card(A) = the cardinality of A,

which is simply all sets B such that A is equivalent to B. That
is, card(A) is all those sets B for which there exists a bijection
f: A — B. Hence B € card(A) or card(A) = card(B) exactly
when there is a function f : A — B such that

1. different elements of A are mapped to different elements of B,
and

2. each element of B is associated with some element of A.

Notice that the definition of bijection has not changed.

Since these sets are infinite we need a new symbol to denote
card(A) of infinite sets. It is traditional to use the Hebrew letter
aleph

N

to denote infinite cardinals. Let

N = {0,1,2,3,...},
R = {z|zis areal number}.

So N is the set of whole, nonnegative numbers, and R is the set of
all real numbers. These would be decimal expansions like 1.414 and
3.14159. Then we write

card(N) =R,

and we say aleph naught. It is quite a surprising mathematical
(universal) truth that there is a cardinal R such that

No < Ny.
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Indeed there is an infinite chain of infinite cardinals
Ng <Ny <Ry <Ny < -0 1,

We will have a chance to expand upon this idea in the later chapters
of this book.
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Chapter 1

Elementary Set Theory

The ideal writing style ascribed to by mathematicians is that in
writing mathematics, less is more. If we can convey the exact idea of
a concept with 5 words instead of 10 then we will use 5 words. Thus
we will use the statement Cardinal numbers form a well ordered
collection over the wordier statement The well ordered property is
enjoyed by the collection of cardinal numbers. The second statement
is mathematically correct but it is more than we need to convey the
idea.

I have tried to practice this ideal while writing the mathemat-
ics in this book. The only exceptions to this ideal are made on
the basis of decisions on the educational value of sentence struc-
ture, the anecdotal comments, or discussions of this sort that occur
between mathematical discourse. Sometimes it is good to sacrifice
some mathematical austerity in the interest of getting an impor-
tant point across to the reader. As the reader will clearly see, this
economy of words in mathematical writings is not exercised in the
text of a discussion. Discussions and intermediate anecdotes con-
tain examples and illustrations which are the only tools we have to
illustrate a concept. Since I have sacrificed a good bit of mathemat-
ical rigor in favor of clarity, examples and illustrations are necessary
if I am to get some subtle ideas across to the reader. This form of
personalized writing style is unavoidable when discussing advanced
ideas from mathematics in the popular press.

We have a bit of a mountain to climb in this book, so be patient.
Perhaps you can sit down in an overstuffed chair or at a table and
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open the book. Maybe you have a pencil and paper handy. That’s
a good idea. Some of these topics need to be diagrammed. And
certainly you have a cup of beverage, coffee would be my choice.
Now turn on that lamp overhead and blend in the final ingredient:
a handful of inspiration. Good luck.

1.1 Sets

Some foundation has to be laid down before any discussion of math-
ematics can begin. Our foundation is Set Theory and functions and
we will discuss these notions in the first two chapters. There is one
assumption that we will use implicitly and explicitly throughout this
book. Our underlying assumption is that all mathematical objects
considered in this book are from a Mathematical Universe in which
these objects exist. Thus when we say that N is a cardinal it is to be
understood that this cardinal lives in a Mathematical Universe and
that we can examine it there. This Mathematical Universe is a clas-
sical idea due to the Greek philosopher and mathematician Plato.
Thus in making our universal assumption we are following in a good
classic tradition. The intent here is clear. We will write given x if
we wish to examine an object in the Mathematical Universe. Our
definition of Set requires us to know when an object is given. Thus
our universal assumption goes to work right away. Whatever else
you might believe, let us agree that this Mathematical Universe is
there and that we can study the elements in it. Said assumption
will not change as we work our way through this book.

Mathematical statements are explicitly or implicitly about ele-
ments in sets. One of the highlights of twentieth century mathemat-
ics was to show that all of mathematics can be derived from the ba-
sic concepts in Set Theory. There is also strong empirical evidence
that a firm grounding in Set Theory gives the reader the mathe-
matical experience necessary to understand the advanced abstract
ideas covered in later chapters. Thus we begin our introduction to
modern mathematics with some work in Set Theory. However, the
Elementary Set Theory that we will cover comes with a price. It
can be terribly dry and uninspiring. We ask the reader to please
be patient and work through the unions, intersections, and comple-
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ments contained in this chapter. Your work will pay large dividends
in our later discussions.

Definition 1.1.1 A set is a collection A of objects called elements
that satisfy the property

Given ¢ then either x is an element in A
or x Is not an element in A.

We will use the standard notation x € A when we want to say
that x is an element of A. The notation x ¢ A is used when we
want to say that x is not an element of A.

Observe that the defining condition of sets applies to objects that
are given or that exist in the Mathematical Universe, and to nothing
else. That must seem strange. But that little bit of philosophy must
be addressed elsewhere. In this text we will assume that everything
we consider exists in the Mathematical Universe. The use of the
words Given x simply gives me a way of pointing out where that x
is. This is perhaps the last time in this book that you will have the
opportunity to think about this, so spend some time with it, and
then read on.

Some examples of sets are in order. Consider the simplest pos-
sible set. The empty set is the collection that contains no elements.
It is denoted by

The empty set is a set since if z exists then z & (. It arises in a
surprising number of places in this book. For example, the set of
all living people who will celebrate their —2nd birthday today is
empty, as is the set of places in the universe whose temperature is
measured at absolute zero. Chemists and physicists define absolute
zero as that tempertaure at which all atomic motion stops, while
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Heisenberg’s Uncertainty Principle tells us that this cannot be mea-
sured. The set of dogs with a PhD in mathematics is, at the time
of this writing, also empty.

For the most part, the sets in this book are listed according to
their elements. Illustrations of how this is done include

1. {e}, a set with the one element e
2. {+,=,:} the set whose elements are the symbols +, =, :
3. {Lori, Christian, Marcus, Gwendolyn}.

The set of natural numbers

N=1{0,1,2,3,...}

is given as an implied list. You might have called the elements of N
whole numbers in the past, but the common professional designation
for x € N is that z is a natural number. The set of integers

Z=1{.,-2-1,01,2..}

is also an implied list.

An implied list is an infinite list of elements. An ellipsis - - - is
usually used to denote the fact that the elements in an implied list
continue in the same manner or under the same pattern. It is hoped
that each reader sees the same pattern when they get to - - -. Implied
lists can be trouble like that. While we would agree that

(2,4..}

begins the set of even positive numbers (so that the next listed
element is 6) we might also see that {2,4,---} begins the powers of
2 so that the next element on the implied list would be 23 = 8.

{2,4,8,...}
If we begin a set with numbers

2,3,9,x
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then what might the next element z be? Ponder this awhile before
you read on. You might say that 5 =2+4+3soz =3+5=8. Or
you might say that 2,3, 5 are the first three prime numbers so that
z =7, the fourth prime number. We will be explicit in the pattern
used in an implied list, so there will be no confusion as to the next
value in a list.

Sometimes the best way to denote a set is to use a predicate
to describe the elements. A predicate is a description in words
and symbols. For example, blue and a temperature on Earth are
predicates. Let P be any predicate. The symbols

A = {z | z satisfies P}

are read A is the set of elements x such that x satisfies P. The
symbol | is read as such that or with the property that. For example,
we would find it most difficult to give a complete list of the elements
in the set {z l z is a person on the Earth}. It is better by far to use
the predicate. Implied lists are often better written as predicates.

N = {z|zis a natural number},

Z = {z|=zis an integer},

E = {z|zis an even natural number},
P = {z|z isa prime number}.

We céuld not define the following sets of numbers without the use
of the predicate form. Let

R = {z| isa real number},

Il

{%lm#Oandn,méZ}.

R is called the set of real numbers and Q is called the set of rational
numbers. While we would have great difficulty in trying to list the
real numbers (in fact it is mathematically impossible) we can make
an implied list of the rational numbers Q. To illustrate this point
let us make an implied list of the set

Q+:{%|m#0andn,m€N}
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of positive rational numbers. We begin the implied list by listing
those rational numbers with numerator 1. The next row will be
those rationals with numerator 2, and then I hope the pattern is
clear. We have thus constructed the following implied list.

(1.1)

N - [N IC IS I NGRS
NI NDIWNDIN N -
Wik Wiw Wl wl =
e I N N O N LR N

Observe that the rows of this infinite rectangular array list the pos-
itive rationals by increasing the denominator of the fraction and
holding the numerator fixed. There are repeated values on this
implied list, aren’t there. We could clean that up by deleting the
rational numbers that are not in reduced form. The result is the
implied list below.

S
1 2 3 4

2 2

1 3

3 3 3 (1.2)
1 2 4

4 4

1 3

Note that among others, the fractions
23214
234’2

have been deleted from our list.
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We will return to this list several times in this book. You might
ask: Why is he doing that? Why would he present a list like that
over and over again? The answer is that by referring to this list
several times I hope to pique your curiosity. This list will be a
friendlier mathematical object when next you see it.

Given a general mathematical collection X, like a set, there are
several ways that mathematicians will examine X. We will define
operations between X and sets like it. We will consider subsets in
X that have the same properties that X has. We will also compare
sets like X by considering functions between them. In this section
we will consider operations on sets and subsets of sets, and in the
next chapter we will consider functions between sets.

We operate on sets in the following ways.

Definition 1.1.2 Let A and B be sets.
1. ANB={z|z € Aandz € B}.

2. AUB ={z|z € A orz € B}. Our use of the word or is the
inclusive or. That is, x € A, x € B, or z is in both A and B.

Because this book is being directed at people with at least a
high school education, the assumption is that you are familiar with
the operations N and U for sets. Thus we will make a minimal
number of concrete examples of what these operations can do. Let
A={e;:} and B = {e,*}. Then ANB = {e}, AUB = {e,:,5}.

Recall that P = the set of prime numbers. These are the numbers
whose proper natural divisors are precisely 1 and themselves. The
first few primes are 2,3,5,7,11, while 1,4,9,12, and 15 are not
prime. We say that 4, 9, 12, and 15 are composite numbers. Even
numbers other than 2 are composite numbers.

A positive natural number p is a prime number if given a set of
p dots, e, then the only rectangle that we can form from those dots
is a line of dots. For example, 2 and 3 are prime because the only
rectangles we can form with those dots are

oo and eee
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while 4 and 6 are not primes since we can draw rectangles with 4
and 6 dots.

If we let E denote the even numbers, then ENP = {2} since 2
is the only even prime. EUP = {z [ x is even or x is prime}. Some
but not all of the elements in EUP are

2,3,4,5,6,7,8,10,11,12,13,101, 102.

Now that we have defined set we can define what we call a subset.
The definition of subset represents a common technique in math-
ematics. Once we have defined an object X that satisfies some
properties then we can define a similar subset in X that satisfies
the properties of X. If we consider these subsets as slices of X then
the subsets of X can be used to study X.

Definition 1.1.3 Let A and B be sets. We say that A is a subset
of B if
given x € A then we can show that z € B.

We write

ACB

if A is a subset of B.

For example, {3} C {1,2,3,4} because 3 is an element of {1,2,
3,4}, {2,3} C P because 2 and 3 are primes, and the set of children
on Earth is a subset of the set of people on the Earth. If A C B
then we also say that A is contained in B. The containments

NCZcQcCR

. x
are clear since each x € Z can be written as z = 1 and each

fraction is a real number. Other containments are the set of your
family contained in the set of people on Earth. The land making
up the country of Peru is contadined in the land that makes up the
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South American continent. College professors form a set that is a
subset of the set of educated people on Earth, and the ages of people
on this Earth in years forms a subset of the natural numbers N.

When you are writing proofs please do not take shortcuts. Use
as much pencil lead, pen ink, and blank paper as possible when
proving theorems. Fill in the details. Don’t be afraid to use some
paper. The trees that were used to manufacture that paper have
since departed. You are not saving trees by using less paper in
your mathematical deliberations. Get a feel for the flow of your
argument. Let the mathematics guide your argument. It is un-
likely that we can find a logically consistent and convincing proof
by writing down an argument with many gaps. Your hard work will
be rewarded when you can follow some of the subtler arguments
presented in later chapters. For now, to give you a running start in
your reading, we present our arguments in all their baroque detail.

The identities in the next theorem are not hard. By including the
proofs we are improving the reader’s intuition of what constitutes a
proof. This could be the first mathematics you have ever met that
did not reduce to a formula or that did not require you to plug in
some kind of numbers. I therefore recommend that you carefully
read the following theorem as it consists of elementary examples.
For instance, to show that A C B we start with an element x € A
and then show that x € B. There is no formula and there is no
shorter way to do this.

Theorem 1.1.4 Let A, B, and C be sets.
1. AC A
2. AnNBCA.
3. IfACBandif BCC then ACC.

Proof: 1. Proofs like this are mathematical double-talk. A C A
because given € A then z € A.

2. As with every proof that attempts to prove X C Y we start
with an element of X and show that it is Y. Solet z € AN B. By
the definition of ANB, x € A and z € B. Specifically, z € A. Then
AN B C A by the definition of subset.
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3. Suppose that A C B and that B € C. Let £ € A. We must
show that z € C. Using the definition of subset, z € A and A C B
implies that z € B. And z € B and B C C implies that z € C.
We have just proved that

x € A implies that z € C
so we can conclude that A C C. This completes the proof.

Admittedly we have included a great deal of detail in these
proofs. We do this to make a point. When you construct a proof
you are trying to tell the reader what you are thinking. Thus in
your argument every reason for the given steps must be explained.
Since the reader does not know your mind, even the simplest of ar-
guments can be confusing to them. Furthermore, the ideas flow one
to the next and every statement in the proof is accompanied by a
reason. This flow helps the reader follow the argument. A jumble of
loosely connected statements will not form a convincing argument.

The next type of argument, called a proof by contradiction, can
be kicked around and explored. It is probably the first time you have
met such an argument. Each proof by contradiction proceeds as
follows. Suppose that we want to prove that P is a true statement.
The proof by contradiction begins with the assumption that P is a
false statement. We then follow our logical noses until we arrive at
a mathematical mistake called a contradiction. This contradiction
shows us that we began our proof with a false statement. That is,
it is false that P is false. Therefore P must be a true statement.
The rest of this book contains many proofs by contradiction, so try
to work your way through this one.

Theorem 1.1.5 0 c A.

Proof: Suppose for the sake of contradiction that § C A is a
false statement. Then @ ¢ A. Consider for a moment what it
means when B ¢ A. It means that some element of B is not in
A. Since § ¢ A there is some element x € @ such that z ¢ A.
But = € 0 contradicts the fact that @ has no elements. This is
the desired contradiction, the mathematical mistake. We conclude
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that our initial assumption § ¢ A is false. Therefore § C A, which
completes the proof.

Have you ever wondered what it means for objects x and y to
be equal, z = y? If x and y are numbers then we have an intuitive
understanding of what it means for £ = y. For example, would you
have recognized the following equations on your own?

! = .5
5 = -
= 4999
. 1 1 1
= “2—2'+'2—3'+§z+"'.

Equality is not always such a simple concept. For our purposes we
will accept that if objects x and y ezist, there is an understanding
of the identification x = y.

The equality of sets is not intuitive at all. It is mathematically
definite, mathematically rigorous. Thus for sets A and B there is a
precise definition of equality.

Definition 1.1.6 Let A and B be sets. We say that A equals B if
A C B and B C A. The traditional notation is

A=B.

Thus to prove that A = B we must first prove that A C B and
then that B C A. There are no shortcuts in this kind of proof.
There are two things to show and we must be prepared to prove
them. Some examples will show you what we mean.

If we let

F = the set of finite or repeating decimal numbers

then we can prove that
Q=F
as follows. To prove that Q C F let z € Q. Then z is a fraction and

your training in converting fractions into decimals makes z a finite
or a repeating decimal. Thus Q C F. Conversely, we show that
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F C Q. Let z € F. You may remember some training in arithmetic
that shows you how to convert the finite or repeating decimal z into
a fraction. We will not pursue that arithmetic here. Then z € Q
and we conclude that F = Q.

Let

A = {z |z is a solution to #* — 1 = 0}.
We will show that
A={-1,1}.

The numbers —1 and 1 are solutions to 2 — 1 = 0 since
(-1)2-1=0and 1?2 —-1=0.

Thus {—1,1} C A. Conversely, let us suppose that z € A. Then
x is a real number such that 22 — 1 = 0. Our high school algebra
gives us the following equations.

2—-1 = 0,
(z-=1(x+1) = 0,
r—1=0 z+1=0,
=1 T = —1.

Thus A C {-1,1} from which we conclude that {—1,1} = A.

Other examples come from the operations U and N on sets A,
B, and C.

Theorem 1.1.7 Let A, B, and C be sets.
1. AUB=BUA.
2. AN{(BUC)=(ANB)U(ANCQC).

Proof: 1. We begin by showing that AU B C BUA. The
reader will note the interplay between the definitions of U and C.
Because of its elementary nature the proof is going to sound like
mathematical doublespeak.

Let x € AU B. By definition of U, z € A or z € B, so that
z € Borx €A By the definition of U, z € B U A, and hence
AUBC BUA.
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Conversely we must show that BUA C AUA. Let z € BUA.
Then z € Bor z € Asothat x € A or x € B. Thus, by definition
of Uz € AUB and hence BUAC AUB.

Therefore AUB = BU A.

The proof of part 2 is left as an exercise for the reader.

Now that was deadly dull. You might complain that the whole
idea of the proof was to say that “P or @” is the same as saying
“Q or P,” and you'd be right. This is a tedious example of what
it means to prove that two sets are equal. But the essence of the
proof is the important thing. The introduction of all that detail is an
attempt to get you to fill in more detail when you think and write.
People tend to make intellectual leaps when they argue. I suppose
that the person arguing feels that he can fill in the detail later
or perhaps the arguer feels that the detail is unimportant. When
original arguments avoid the details they are usually hard to follow
and they are often incorrect. We cannot allow ourselves the luxury
of gaps in our train of thought when we argue mathematically.

Think of a mathematical argument as a maze in which you want
to get from point A to point B. There are many paths we can
choose. Because this is a maze, we cannot lift our pencils off the
paper, thus ignoring the boundaries of the paths, and then drop the
pencil point on B. That would be contrary to the spirit of playing
with mazes. Many paths from A lead to a blind alley. We cannot
find B down these paths. However, we can learn something from
these blind alleys. They indicate the paths that we should avoid in
trying to get to B. Perhaps there is some general principle that we
can learn from these blind alleys.

Let us apply the maze analogy to the construction of a proof.
We know what we have to start with (the hypotheses) and we know
where we want to finish (the conclusion). Try repeatedly to con-
struct a logical path from the hypotheses to the desired conclusion.
Don’t give up. Keep at it. Refine your argument but do not leave
out essential details. Mathematical proofs do not come cheaply.
They require a good deal of hard work. Eventually, we will find
that path from the hypotheses to the conclusion. Then, if we apply
what we have learned about the problem, we will rewrite the proof
and perhaps find an elegant or beautiful path through the logical
maze from the point of origin represented by the hypotheses to the
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ending point represented by the conclusion.

We want to investigate what it means when an element z is not
inaset A,z ¢ A. This is also a good opportunity to stretch our
logical experience with the word “not.”

Let me introduce a new notion here. Sometimes we will find
that several sets A, B, and perhaps C are contained in one larger
set U. This set U plays the role of the universe for A, B, C in that
all operations on A, B, and C are relative to U. For this reason
U is called a universal set. For example, the set of real numbers
R is a universal set for the natural numbers N and the rational
numbers Q. On the other hand, N is the universal set for §, {1},
and {2,4,6,--}.

Definition 1.1.8 Let A and B be sets in some universal set U.
Then

A\B={z|z € A andz ¢ B}

and

A" = {z|z el andz ¢ A}.

We say that A’ is the complement of A.

Intuitively, to form A \ B we take the elements of A and we
throw out the elements of B. To form A’ we take those elements in
the universal set U that are not in A.

Some examples will help us see what we are talking about.

Let us begin with A = {a,b,¢,d,e}, B = {c,d,e, f, g}, C =
{a,b,c,d,e, f,g,h}. Then A\ B is the set of elements in A that are
not in B. Thus

A\ B = {a,b}

as the reader can easily verify. It is somewhat of a surprise to see
that
A\C = {}
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since each element of A is in C, A C C. Do this one element by
element. We throw out a since a € A and a € C. We throw out
bsince b € A and b € C. We throw out ¢ since c € A and c € C.
Keep going until you run out of elements from A to test. So A\ C
has no elements, A = ). Let us find C\ B. Write down the elements
of C that are not in B. Delete the elements of C that are in B.

C\ B = {a,b,h}

Let P be the set of people on Earth and let A be the set of male
people. Then P \ A is the set of female people. This should be
enough examples of a finite nature.

Recall that E = the set of even integers and let «f = N. Then
E’ is the set of integers that are not even. That is, E’ is the set of
odd numbers. If T is the set of natural numbers that are divisible
by 3 then T’ is the set of natural numbers not divisible by 3. That
is, T’ is the set of natural numbers that have a nonzero remainder
when divided by 3.

Recall that P = the set of prime numbers and let &/ = N. Be-
cause primes cannot be properly factored while composite numbers
can be properly factored, P’ is the set whose elements are 0 and 1,
and the composite numbers. A number > 1 not in P but in N is
divisible by at least two numbers a, b # 1. Then such a number is
a composite number, and hence the elements of ' are 0, 1 and the
composite numbers.

Let Q™ be the set of negative rational numbers,

Q = {—=|nm#0eN}
= {-q|qeQ}.

Let Y = Qand let A =Q~ U{0}. Then A’ is the set Q* of positive
rational numbers.

Another example is found by setting U = {z € R|z > 0} = the
set of nonnegative real numbers. Then QT C U and (Q*)’ is the set
of positive irrational numbers.

Here’s a challenge for the reader. Without peeking below, try
to describe the symbols z € (A’)’ using words. This might help you
see the power of this symbolism over the language in dealing with
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double negatives. As you work on this exercise note the interplay
between the symbols z, A, and ()’ and the word not.
The next theorem is another example of a proof by contradiction.

Theorem 1.1.9 Assume that there is some universal set U that
contains the set A. Then AN A’ = 0.

Proof: As with each proof by contradiction, we begin by assum-
ing for the sake of contradiction that A N A" # §. We now seek
that mathematical mistake, that contradiction. Then A N A’ must
contain an element, say, ¢ € AN A’. By the definition of N, z € A
and z € A’ or equivalently z € A and z € A. This conclusion
contradicts the fact that A is a set. (Reread Definition 1.1.1 to see
that if A is a set then 2 € A or z € A but not both.) Thus our
initial assumption is false. That is, AN A’ = @, which completes
the proof.

At this point I hope you have convinced yourself that
(A7) =4

for each set A. Here is how I hope you argued. Let z € A. By the
definition of A’, x € A/, and hence z is in the complement of A’
The complement of A" is (A") so z € (A’) and so A C (A').

On the other hand, suppose that z € (A’)’. Then by definition
of complement, z ¢ A’. Either z € A or z ¢ A. Assume to the
contrary that z & A. Then z € A, contrary to x & A’. Therefore
z € A, which implies that (4’)’ C A. Consequently A = (A’)’, and
this completes the proof.

These two proofs were instructive exercises in mathematical dou-
ble talk. The level of detail I used was strictly an educational de-
vice. No professional includes the attention to minutiae that we
have given here. However, in an introductory work like the present
one, it is necessary for us to observe this obsessive level of detail
in a proof. This level of detail allows you very little freedom of
thought when you read it, and that is the key. By giving this level
of detail you and I are certain to be thinking the same thing, thus
giving me knowledge of how much further I can push the level of
understanding.
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To hone the reader’s writing skills we present a series of elementary ex-
ercises. The reader is encouraged to try these exercises and to practice the
completeness and clarity of a rational argument that characterizes a well con-
structed proof. Let A, B, and C be sets contained in some larger universal set
U.

1. AnNBC AUB.
2. ANB=BnA.
3. AU(BNC)=(AUuB)N(AuC).
4, AUA =U.
5. DeMorgan’s Law
(a) (ANBY =4A'uB.
(b) (AuBY =A'NB.
6. (A\B)nB=0.
7. (A\ B)N(B\ 4) =4.
8. (A\B)U(B\A)=(AUB)\(ANB).

1.2 Cartesian Products

The next operation on sets allows us to make a larger dimensional
set from a number of smaller dimensional sets.

Definition 1.2.1 Let A and B be sets. The Cartesian product of
A and B is the set of pairs

AxB = {(z,y)|re Aandyec B}

To form A x B we take the elements of A and B and pair them
up. For example, if we let A = {a,b,c} and let B = {z,y} then

A x B ={(a,z), (b, x), (¢, ), (a,9), (b,;y), (c,y) }.

It is natural to picture A x B as a two dimensional lattice of points.



18 CHAPTER 1. ELEMENTARY SET THEORY

(¢,y)
y — [ ] [ ] [ ]
(b, z)
r — e . . (1.3)
|
a b c
The Cartesian plane
RZ=R xR

is the plane equipped with = and y axes with which you are familiar.

(2,4)
4— .
3|
3,2) (1.4)

2— .
1-—

l | | l

1 2 3 4

The Cartesian Plane R x R
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This is the plane on which you graphed points, lines, and parabo-
las in an early algebra course. The reason that the Cartesian plane
R? and the Cartesian product R x R are equal is that each point
in the Cartesian plane can be represented by a unique pair of real
numbers (x,y). So the point labelled by (2,4) is found by moving
2 units in the z direction and then 4 units in the y direction.

We then have a picture that we can use to diagram a number of
Cartesian products. Such an example is the pairs of natural numbers
NxN.

t
(2,4)
4— ° . ° °
3— ° . ° .
(1.5)
3,2)
2— . . ° °
1— . ° ° °
| l f |
1 2 3 4

The Array of Natural Numbers N x N

NxN = {(n,m)|n,meN}
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Here is how we picture N x N as a subset of the Cartesian plane.
This array extends indefinitely upward and to the right. Thus N x
N contains (1,1) and (101,102) but it does not contain (3,3) or
(v/2,0). We will use an array similar to this one when we count the
set

Qt={zcQ|z >0}
The next result may strike you as a bit odd. It is another ex-
ample of the care with which the empty set must be treated. The

proof is one by contradiction. Briefly, A x @ is empty because it
does not contain any pairs.

Example 1.2.2 If A is a set then

AxD = 0.

Proof: Assume for the sake of contradiction that there is an
element p € A x . Then p = (z,y) for some z € A and y € 0.
This contradicts the fact that ) has no elements. Thus our initial
assumption is false, and it must be true that A x § = . This
concludes the proof.

For instance, Nx{, Rx 0, and, for sets A, #x A are the empty set.
You can match these mind stretchers by thinking of multiplication
by 0. Given any number z, z -0 = 0 and in much the same way
X x § =0 for sets X.

This is not the last time we will make an analogy between op-
erations on sets and operations on numbers. In the later portion of
this book, we make the analogy precise.

1.3 Power Sets

Let A be a set. The reader is acquainted with the idea of a subset
of A. We will take that idea to a new level by introducing the set
of all subsets of A. This power set will be an important device in
the later chapters of this book.
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Definition 1.3.1 Let A be a set. The power set of A is the set of
all subsets of A. We write

P(A) = {sets X |X C A}.

Some examples will be useful. Since power sets grow quickly our
examples of necessity will be small. It may be hard to accept at first
that the elements of P(A) are themselves sets. If A = {w,z,y, z}
then P(A) contains as elements the sets 0, {w, z}, {z,y, z}, and 11
more sets. See if you can find them. If we let

R*={zeR|z> 0}

denote the set of positive real numbers then the power set P(R™)
of R* contains as an element the set Q*. P(R*) also contains the
element {1,2,3} and the element {v2,v/3,v5,v6,...}. (What is
the next element on the last implied list, reader?) Seeing a set as
an element in a larger set can be done but it takes practice.

Since ) and A are always subsets of A, P(A) contains ) and A.

0, Ae P(A) for any set A.

For example,
P({e}) = {0, {e}}
and
P({a,b}) = {0, {a}, {b}, {a, b}}.
The reader can find the eight elements in P(A) when A = {a,b, c}.

Be sure that you include @, {b}, {a,c}, and {a,b,c}. Because § is
the only subset of ) we have the equation

P@) = {0}
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The importance of the power set is that it allows us to construct
a much larger set from a smaller one. In general, if A is a finite set
with exactly n elements then

P(A) contains exactly 2™ elements.

Thus P({a,b}) has 22 = 4 elements while P({a,b,c}) has exactly
2% = 8 elements. Try writing down the 8 sets that comprise
P({a, b, c}).

In the case where A is an infinite set we can ask for a self-
contained method for describing the elements of A. For example,
P(N) contains as elements the set {1}, the set E = {2,4,6,...} of
even numbers, the set P of prime numbers, and N. But when we try
to make a list of the elements of P(N) we are met with the following
deep result of mathematics.

We cannot make an implied list of the elements in P(N).

Any list that we make of P(N) will miss some element of P(N) and
any correction we attempt to make will still result in an incomplete
list of the elements of P(N). We will have much more to say about
this mathematical mystery in later chapters.

1.4 Something From Nothing

Here is an application of sets that appears infrequently in the pop-
ular press. Although humans have used the natural numbers since
they could herd sheep, most of us are unaware of the mathemati-
cally precise construction of, say, 1. We will use sets and subsets to
construct the first few natural numbers. The process with which we
start is easily extended to a construction of N from nothing. For this
we must initiate a discussion of cardinality that will be improved
upon throughout the chapters of this book.

We give a superficial and mathematically imprecise definition of
counting that can be understood without a significant mathematical
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background. In the next chapter we will present the mathematical
background needed to make a precise accounting of the counting
process. Let A be a finite set. The cardinality of A is defined to be

card(A) = all the sets X that can be matched
element by element with A.

When treating card(A) we must be careful because card(A) is not
a set. It is proper to call it something else like a collection or a
class. But card(A) is just too big to be a set. We will avoid the
issue of what card(A) is by carefully avoiding set theoretic issues
surrounding sets, collections, and classes.

We will use card(A) as a precise way of counting the number of
elements in A. That is why we need a precise understanding of how
to “match element by element” the elements of X and A. On the
one hand, we have a word cardinality that you should interpret as
meaning the number of elements in a set. On the other hand, we
have a notation card(A) that represents all sets that have the same
number of elements as A. Some examples will help you visualize
what we mean by this.

For the set

{e}

the set card({e}) consists of all sets that can be matched element by
element with {e}. This is a simple thing to see, mostly because the
set {®} is so small. The sets {a}, {*}, {1} are in card({e}) because
they can be matched element by element with {e}. The matching
between {a} and {e} is obvious enough. This matching is

a H—— e,
Similarly, card({a, b}) consists of the sets that can be matched ele-

ment by element with {a,b}. The sets {z,y},{0,1}, {H, W} are in
card({a, b}). One matching between {0,1} and {a, b} is
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There are others and you are invited to write them down, but we
only need one. At this point I hope that the pattern is clear to you.
The set {a,b,c} is in card({1, 2, 3}) because there is a matching

a — 3

b — 2

c — 1.

Notice we didn’t need to pick the one you were thinking of. Any
matching of elements will do. We just chose a different one.

Let’s continue the discussion by looking at the set without ele-
ments, . We have

card(@) = all sets that have no elements.

Inasmuch as the notation card() is a bit cumbersome, we will use
the symbol 0 to denote card(d).

0 = card(0).

This notation is perfect. The identification of card(@) with the tra-
ditional symbol 0 makes perfect sense. We want to choose a symbol
for card() that will not confuse your mathematical sensibilities.
The cardinality of @ is denoted by 0 because we say so and for no
other reason. But the use of 0 is compelling. It makes you think
about the right ideas, the right quantities, and the right magni-
tudes. We could just as easily have decided that card(@) should be
denoted by Z. But since the world has been using 0 for a similar
purpose for centuries we will continue the tradition. We have thus
constructed the natural number 0 from nothing.

Next we construct the number 1. Take the power set P(0) of
0. P(D) is the set of all subsets of §. Thus A € P(0) exactly when
A C (. But since § has no elements, A C ) implies that A = 0.
Thus the only element of P(0) is §, or equivalently

P(0) = {0}.
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Observe that P(@) is not the empty set since it has an element,
namely, 0. Initially, you may not like thinking of § as an element
in a set, so keep trying. Since it has been used in a similar way for
ages, we will use the symbol 1 to denote the cardinality of P(0).

1 = card({0}).

This is in perfect agreement with the ages old use for 1, isn’t it?
Before you read this book, if I asked you to count the number of
elements in the set {#} you would most certainly say “One.” So
this notation agrees with your intuition, with your experiences, and
with your senses. It is the idea of defining 1 in this way that may
unsettle your inner moral mathematical compass. But since this
use is not in conflict with the rest of society, then why not make the
identification. Nothing spiritual will be harmed. What we identify
and what we believe are the same thing.

Okay, let’s define the natural number 2 in such a way that it
does not conflict with our education of what 2 means. I will respect
your difficulty in seeing @) as an element in a set and we will for the
moment look at {e}. We will see together that

P({e}) = {0, {e}}.

Write down a subset A C {e}. Since A is a set either @ € A or
e ¢ A, there can be no other cases to consider. Because e is the
only element of {e} either A = {®} or A is empty, A = {. Thus, as
we predicted, P({e}) = {0, {e}}.

Now force yourself to see ) as the lone element of {#}. Convince
yourself that {0} is the set whose only element is ). Applying the
above argument to {Q} instead of {e} yields the power set of {0}.

P({0}) = {0.{0}}.
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We have constructed 2 once we have defined

2 = card({0, {0}}).

This definition of 2 agrees with everything you learned as a child.
There are just enough elements to make perfect sense of this use
of the symbol 2. You can think of 2 as card({0}) or you can think
of it as a number you learned long ago. It doesn’t matter. They
represent the same idea, don’t they? That is the beauty of this
discussion. We are constructing natural numbers in an entirely
precise mathematical format without losing the traditional meaning
of the symbols we are using.

Next, construct 4. We will be careful not to upset our mathe-
matical traditions concerning the number or symbol 4. Use bullets
for @ if you need to, but see the set {0, {0}} as a set with two el-
ements. We will examine the subset structure of {z,y} and then
restrict our attention to {0, {@}}. This is the last time we will do
this, so get comfy.

Let A be a subset of {z,y}. If A has no elements then A = {;
if A has exactly one element then A = {z} or A = {y}. If A has
other than one element then A = {z,y}. There are no other choices
since all of the elements of {z,y} are exhausted at this point. Thus

P({z,y}) = {0, {=}, {v}. {z. u}}.

If we replace z by § and y by {0} then we have written the power
set of {0, {0}}.

P({0, {0}}) = {0, {0}, {{0}}, {0.{0}}}.

We define the number 4 to be the cardinality of P({0,{0}}). Thu

w0

= card({0, {0}, {{0}}, {0.{0}}}),

which agrees with our previous uses of the symbol 4. We have thus
constructed the natural numbers 0, 1,2, 4.
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Wait, there is another way to see this. We observe that

0= {

P0) = {(0}
P(P®) = P{0}) = {0.{0}}
P(P(P(©0)) = P(P{8}) = P{08.{0}})
= {0, {0}, {{0}}, {0,{0}}}

From this chart we can see that

N = O
il
(¢
jov]
=]
o,
AN N N N

This last list shows us that the numbers 0, 1, 2, 4 can be realized as
an iterated application of the power set operation P(-) by starting
with §. So in a real sense we have constructed the numbers 0,1,2,4
from nothing. I leave it to you to construct the natural number 3.
Try to do so in the spirit of the above construction. However, 3 will
not be P(A) for any set A. Try to think of 3 as 4 — 1.

1.5 Indexed Families of Sets

To this point we have only considered U, N, and ()’ for sets A and B.
These were used to make us comfortable with the logical properties
of the words and, or, and not. In this section we will work with
U, N, and ()’ for families of sets. In order to make the discussion
as accessible as possible we will work only with finite or countable
families of sets { A, Az, As, ...}. These countable families will prove
to be enough of a mind expander for this book.

The smallest countable families of sets are the finite families.
Thus {N, Z,Q, R} is a finite family of sets as is {@, {®}}. You know
what a finite family of sets is. When you list the students in the
classrooms at the local elementary school, you are making finitely
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many finite sets. You make one finite set for each classroom. There
may be 6 such classes. The lists of enrolled students in a classroom
form a family of 6 sets as in the next list.

Listy, Listy, Lista, List4, Lists, Listg

Each list List, is the list of names of students in classroom k. The
symbol k will be a natural number between 1 and 6.
Our examples of countable families of sets begin with

{1}, {2}, {3},...
{1},{1,2},{1,2,3},....

Oftentimes the implied list of sets will be listed vertically, as in the
following family of sets.

A = {0}
A2 == {0, 1}
Ay = {0,1,2}

A; = {0,1,2,3}

This list is infinite and it consists of sets. That is why we call such
a list an infinite family of sets.

Here is another. For each m € N let N,, be the set of natural
numbers divisible by m. Then the list

Ny = {2,4,6,...}
Ns = {3,6,9,...}
Nm = {m,2m,3m,...}

is an infinite family of sets.

For each natural number m let

Q; be the positive rational numbers
whose numerator (the top part) is m.
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We can make an implied list of this set since the denominators of a
positive fraction can be only 1,2,3,4,....

S L
2 {1’2’3’4’

Notice the denominator increases while the numerator remains m.

1111
+ = .
Ql - {17273?47 }
2222
+ = o2z
Q2 {19253545 }
3333
+ = 2 Z 2 ...
QB - {172»3747 }
Qf = 24 24 24 24 _
24 - 17273747

We will not have a set Q% since v/2 is not a natural number.

Here is another example. Given an n € N let (n,n+ 1) =
{r € R|n < z < n+1} be the set of real numbers strictly between
n and n + 1. In picture form we would draw

n+1

(n,n+1)

Then
{(n,n+1)|ne N} ={0,1),(1,2),(2,3),...}

is an infinite family of sets.

At this point we will define N and U for countable families of sets.
The point behind doing this is that the notation corresponds to some
important language. In particular, we will have the opportunity to
use phrases like for some, or at least, or for all. The introduction of
unions and intersections of infinite families of sets is meant to bring
these phrases and their uses to your attention.
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Definition 1.5.1 Let {Aq, Ay, Az, ...} be an infinite family of sets.
1L N{An|n €N} =Ny An={z|z€ A, for alln € N}. The

phrase for all means that x is an element of every set in the
family of sets.

2. H{An|n € N} = U,en An = {z|z € A, for some n € N}.
The phrase for some means at least one and at most all.

We certainly can use some examples here. Let
Ap, Ay, Ag, As, ...

be an infinite family of sets. Then

UneNAn:AOUAIUA2U....

Some examples will help you visualize what we are talking about.

Example 1.5.2 Let

A = {0}
A2 = {0,1}
A3 = {0,1,2}

Ay = {0,1,2,3}

Then 1 € Ay, 2 € A3, 3 € Ay, and continue. In general we see that
ne Apq foralln e N,
The phrase for all means that each and every set A, in the list

satisfies the predicate n € A,,;. Thus if we begin with a number &
then

k is an element of A,, for some n € N.
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We conclude that k£ € U,enAn. In fact since there was no extra
condition on k we can say that each natural number & is in Up,enAng.

N C U,en An-

Suppose we look at N,enA, now. Since 0 € A, for each n € N

we can see that
0¢ ﬂ A,
neN

If m € N is a natural number other than 0, then m ¢ A,, so that
m ¢ A, for some natural number n. In fact m ¢ A, for many
natural numbers n but we only need the one occurrence to conclude

that
m ¢ ﬂ A,

neN

Therefore [,y An = {0}.

Example 1.5.3 Let us make another infinite family of sets. Ex-
amine the list

B, = {0,1-5}
B, = {1-525}
B, = {2-53-5}

By = {3-54-5}

of sets of two natural numbers. Let
F = {5n|n € N}
denote the set of nonnegative multiples of 5. We will prove that
U B.=F.
neN

Proof: Let x € UnenB,. Then z € B, for some n € N. By the
definition of B,, z € {5n,5(n + 1)} so that z is a multiple of 5.
Hence x € F. As sets this means that

UBnCIF.
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On the other hand, the second inclusion begins with an element
x € F. By the definition of F there is an n € N such that z = n5.
Then z € {5n,5(n+ 1)} = B, for some n € N. We conclude that

T € {Jpen Br and so
Fc B

neN
Therefore | J,cy B» = F and the proof is complete.

Example 1.5.4 In this example we let p > 2 be a prime and we let
N, denote the set of positive natural numbers divisible by p. Thus
N, is the set of positive even numbers = {2,4,6,...}, N3 is the set
of positive numbers divisible by 3, and

N; = {5,10,15,20,...}.

We let N; = {0, 1} by default. This is just a notation we are using.
It has nothing to do with the prime notation. Then we have an
infinite family of sets

Nl - {0,1}
Ny = {2,4,6,...}
Ng = {3,6,9,}

N: = {5,10,15,...}

We have an infinite family
N;,No,Ng, N5, ...

indexed by 1 and the set of prime numbers P. Thus N7 is a member
of the family but Ny is not included in the family. Since each natural
number n > 2 is divisible by some prime number, I leave it to you
to justify that

Urep N = NoUN3UNs U ..
= those natural numbers divisible by some prime
= the set of natural numbers n > 2.

Remember 1 is not a prime number, no matter what you may believe
right now. Thus 1 cannot be divisible by any prime. Moreover 1 is
not in N, for any prime number n, so that 1 & Unep N,.
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Therefore

NluunepNn = N1UN2UN3UN5U...
{0,1,2,3,...}
N.

Example 1.5.5 Using the notation in the previous example let us
examine the set

X=NNNsNN; ... =[N,

peP

Suppose, for the purposes of a proof by contradiction, that we as-
sume that there is an element z € X. Then z € N, for each prime
p € P so that x is divisible by each prime p € P. What are the
natural numbers divisible by all prime numbers? You are passingly
familiar with the answer each time you factor a natural number.
Natural numbers are divisible by only finitely many prime num-
bers. This contradiction (that z is divisible by all primes and that
x can be divisible by only finitely many primes) shows us that our
assumption is incorrect. Hence X = . That is,

NoNNg NN N Lo =0
even though the intersection of any two of these sets is nonempty.
pq € N, NN, since pq is a multiple of p and a multiple of ¢
so that N, NN, # 0.

Example 1.5.6 Let Ag, A;, Aa,... be an infinite family of sets.
The following negation of the definitions of N and U is a good exer-
cise in using mathematical language properly.

T & (,en An exactly when z ¢ A, for some n € N.

Notice the change in phrasing. We went from for all to its logical
negation at least. Thus the negation of for allis at least or for some.

The statement all colors are impressive is negated by stating
some colors are not impressive. Try negating x € S for all sets
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S before reading on. You would be correct if your negation reads
z &S for some set S.

The statement n < n+ 1 for all n € N is negated by writing
n > n+1 for some n € N. Said another way this negation reads

there is some natural number n such that n > n + 1.

This is obviously a false statement, which we should expect since
we are negating the true statement n < n+ 1 for alln € N.

The phrase for some means at least one, at most all. Its meaning
will be reinforced with several examples.

The statement some children have blue eyes means that there
is one child or perhaps several children who have blue eyes. A
quick check of European children will verify that many children
have blues eyes, so logically some children have blue eyes. The
statement z € A, for some n € N means that there is one, and
possibly more than that, natural number n such that z € A,. The
statement 3x = 0 for some x € R means that there is one, and
perhaps more, real number x such that 3z = 0. Algebra shows us
immediately that in this case there is exactly 1 number z such that
3z = 0. But still it is proper to say that there are some real numbers
x such that 3z = 0.

If we have a predicate P and we write P s satisfied by at least
one natural number, then we mean that there is a natural number
n that satisfies P, and that there may be more natural numbers m
that satisfy P. We do not rule out the possibility that every natural
number n might satisfy X. For instance, let

P = there are n musicians in a rock-and-roll band.

Then P is satisfied by at least the natural number 4. In fact, P is
satisfied by 3, 5, and 7 as well. Rock-and-roll bands do not run into
the thousands of musicians so there are some natural numbers that
do not satisfy P. I leave it to you to name the bands that have that
many people in them, keeping in mind that your author’s narrow
musical taste runs to sixties and seventies rock-and-roll.
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Example 1.5.7 Let

Ay = {0}
Al - {0,1}
A2 = {0, 1,2}

be an infinite family of sets. Then 2 € A;, 3 € A, and, in general,
n & A,_1. Hence

2,3,....,n & [)4n

neN

because 7 is not in some set A,, in this infinite family of sets. Since
0 € A, for all natural numbers n we see that

{0} = [)4n

neN

We say that x € U,enA, if z € A, for some n € N,
The negation of for some is never.
Thus the negation of the union looks like this.

v ¢ (A

exactly when

z & A, for any n € N.

Thus
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The following versions of DeMorgan’s Laws are left as exercises for the
reader. Let {4, I n € N} be an infinite family of sets contained in some universal
set U.

L. (ﬂ An)l= U 4.

neN neN

2. (U AH)I: M 4,

neN neN



Chapter 2

Functions

Throughout this book we will want to compare sets. We do this by
studying the functions that exist between them. A function from
a set A into a set B is a rule that associates each element x € A
with exactly one element y € B. If we name the rule f then we will
write

f(@)=y

to denote the fact that the element z is associated with y. We will
also say that y is the image of x under f. Some of you are familiar
with functions from that third year of high school math. In that
case a function was usually a mapping or a general rule that acted
on real numbers. For example,

f(z) =2

would be the function from R into R that associates each number z
with its square 22, Others may have written this function as z? = y.
In either case we are using some algebra to denote the image of z.

Our functions will only occasionally operate on real numbers.
The reason for this is that our deliberations are on general sets
and not exclusively real numbers. For example, we might define
the function f that takes each person on Earth to his/her age in
years, or we might define a function that associates each woman
with exactly one man. You might even associate the elements of

37
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{a,b, c} with the elements from the set {z,y, z} by defining

a — I
b — 2

c — Z.

Notice that the function, which we will call f, misses y as an image
and that two values b and ¢ map to one value z. This type of
abstract association is more closely related to the functions that we
will encounter as our discussion evolves.

2.1 Functional Preliminaries

Suppose we are given sets {z,y, z} and {0,1,2}. Some of the more
important questions we will pursue in this book are the folloowing.

1. What do we really mean by an element by element matching
between {z,y, z} and {0,1,2}7

2. Can we make the notion of the cardinality of {z,y, z} a math-
ematically precise idea?

3. It seems clear that {a,b} has fewer elements than {z,y, z}.
Can we make this precise?

We will approach these questions by considering a general compar-
ison of sets called a function that requires us to investigate the idea
of a function on abstract sets.

The following takes our definition of function and gives it some
mathematical style. It may read as a dry definition to you but it
has the advantage of being mathematically precise. Perhaps you
could try to define functions in such a way that it encompasses the
examples we give in this section. There is something to be learned
by trying to do that, so please do.

Definition 2.1.1 Let A and B be sets. A function from A to B is
a rule f with the following two properties.

1. f associates each x € A with an element f(z) € B.
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2. There is exactly one value for f(z).

A bit of very useful notation is the following. We will write

fiA—— B

if f is a function from A to B. We call A the domain of f, and we
call B the codomain of f. We call f(z) the image of x under f just
as we did in our algebra class in high school.

Another description of a function that you may find a bit easier
to absorb is the following. A function f from A to B assigns to each
element £ € A an image f(x) € B. There must be no ambiguity in
the value of the image f(z). This definition gives you the mental
picture of a function that you had in high school, but it contains so
much more. You may have read that

f(z) =y

and that is not wrong. We often let y denote the image of x. It
is common to do so especially when graphing the function f as we
will do presently. You may also have read that

fl@) =2z +1,

which is an example of a function on real numbers. This is not the
only type of function, which is why we had to define functions in
such a broad abstract way. There is a function f : {0,1,2} —
{z,y, z} defined by the rule

Under this function, y is not associated with any element in {0, 1, 2}.

Our next example of a function f : R — R is defined by setting

f(z) =7z +6 foreach zeR.
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We should all be familiar with the fact that the graph of this func-
tion is a line that is inclined upward when we read it from left to
right. Notice that to each * € R there is exactly one real num-
ber y = 7x + 6. Observe that the images of 0, 1, and —1 can be
calculated using the formula f(z) = 7z + 6.

f(0) = 7-0+6=6
f(l) = 7-1+6=13
f(-=1) = 7-(-1)+6=—1.
A familiar function f : R — R is defined by f(z) = z%. The

value z? is a real number that is unique to z so f is indeed a function.
We can find the images of 0, 1, and —1 easily enough.

f(0) = 0*=0
f(y = 12=1
f(-1) = (-1)*=1,

If you had any trigonometry in your education then you may
know that
1(6) = tan(6)

defines a function that associates with each angle 8 its tangent,
tan(d). We can construct the value tan(6) as follows. Draw a trian-
gle whose base length is 1 and whose base angles are 8 and a right
angle, as in the diagram below. Then the side opposite § has length
tan(d). If you possessed a ruler that was mathematically accurate
to all decimal places, you could read tan(f) from picture (2.1).

tan(f) (2.1)

b O

The functions f(z) = 7z + 6, f(z) = z?, and f(z) = tan(z) will
take real numbers z and associate them with or send them to a real
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number f(z). Most of the functions that you have experienced in
your lifetime are like this. Now let’s see something more abstract.
Consider the graph (2.2).

1

(2.2)

It has a naturally occurring feature that you may not have seen
before. It has a gap and a hole in it. These are common features
of graphs, even though they have been kept from you, and they
occur more often than the smooth connected curves with which you
are familiar. We will present some of these functions with broken
graphs.

Example 2.1.2 Define a function f: R — {1, —1} by setting
1 if z<0
f(m)_{ —1if 2>0 °

We observe that given z € R then f(x) =1 or f(z) = —1 but not
both. Thus f satisfies our definition of function. Its graph is the
one given in (2.2).

Example 2.1.3 A function whose graph has many more steps is
the postage rate function.

f(x) = cost in pennies to send a letter that

weighs = ounces by snail mail.
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Its graph is the graph (2.3) below.

4

op L o——e
4p | o——e
3p L o—e

(2.3)

2p -+ o—e

If a letter weighs up to and including 1 ounce, the cost of postage
is p. (At the time of this writing p = 39 cents.) If it weighs more
than 1 ounce but at most (and including) 2 ounces, then the cost
to mail the letter is 2p. This continues on until you get tired of
it. The graph of this function must reflect that jump in price at 1
ounce and at 2 ounces and at 3 ounces, and so on.

The fact that we have a hole o on a graph means that the price
is not evaluated at that line. The line corresponding to p has a
hole at the left end. This is the cost of mailing a letter weighing
0 ounces. There is no letter to mail in this case so the cost is 0
cents. The line corresponding to p has a solid dot e at its right end,
and the line corresponding to 2p has a whole at the left end. That
means that the cost for a 1 ounce letter is to be evaluated from the
lower line. Thus we pay p cents when mailing a 1 ounce letter.

The graph tells us that it will cost 2p cents to mail a letter that
weighs more than 1 ounce and up to 2 ounces. The black dot e on
that line means that if the letter weighs more than 1 ounce then
you must pay 2p to mail it. Similarly if the letter weighs more than
2 ounces or up to 3 ounces then the letter costs 3p to mail. You can
guess what happens when the letter weighs more than 3 ounces but
up to 4 ounces.
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Example 2.1.4 Define a function f: R — {0, 1} by setting

_ [ 1 if z€Q Thatis, zis a fraction

f(x)‘{o if z¢Q

This one cannot be graphed, but it is still a function. If we were to
try to graph this function we would have to graph a horizontal line
that is full of holes and full of dark spots. For instance,

f0)=1, f (%) — 1, and f (%) -1,

f(%>=0,f(%>=0,andf(%>=0.

Furthermore, between every two real numbers x and y there is a
rational number ¢

while

T<qg<Yy

so between every two numbers z and y at which f(z) = f(y) =0
there is a number ¢ such that f(g) = 1.

f®)=0,f(g)=1f(y) =0.

Current technology does not permit us to graph such a line. How-
ever, since a given real number z is either a rational number or
an irrational number but not both, the rule f defines a function
f:R— {0,1}.

Next let us consider functions that are not so algebraic.

Example 2.1.5 Let P be the set of people on the Earth, and define
a function a : P — N as the function that assigns to each person on
Earth his/her age in years as of January 1, 2005. Thus a(Wendy) =
15, a(new born) = 0, and a(author) > 25. You cannot at this time
determine a(author), but there is a natural number that the author
calls his age. However, at the time of this writing there is no person
z such that a(x) = 200.
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Example 2.1.6 Let L be the set of locations on the Earth, and
define a function ¢ : L — N to be the function that assigns to each
location on Earth the temperature in degrees Celsius at that loca-
tion at exactly 12 noon on January 1, 2005. So you might find that
t(South Pole) = —80°C, t(Guam) = 30°C, and t(outside) = 20°C.
You cannot at this time determine ¢(300 miles under New York City),
but there is a natural number that we would all agree is that tem-
perature. There is no place z on Earth such that ¢(z) = absolute
zZ€ero.

A rule f must satisfy both of the conditions in our definition
of function if it is to be a function. The following rules are not
functions.

(Failure of Condition 1.) Let f be the association from R to R
defined by f(z) = y/z. Then f is not a function since f(—1) =

V=I¢R.

(Failure of Condition 2.) Let R* be the set of positive real
numbers, and let f be the association from R* to R defined by
f(z) = £4/z. Then f is not a function since f(1) = 1,—1 is more
than one value.

We think we know what an implied list is, but here is a math-
ematically precise way to think of it. Let A be a set. Any set will
do. We define an implied list of elements in A to be a function

f:N— A
In this case we will write
f(0) = a0, f(1) = a1, f(2) = aa, ...
and in general
f(n) = a, for each element n € N,

For instance, we can define f: N — R as

f(n)=n.
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Then f is the implied list
0,1,2,3,....
Another function f: N — R defined by

f(n)= ! foralln € N

n+1
is the implied list
1111
1’2’3 ¢4’
The following is a pretty little rule that is not a function unless

we are very careful.
In this age of computers it should be no surprise that we can
find for every real number 0 < x < 1 a binary series

by by bs

where the digits by, by, b3 . .. take values in the set {0,1}. We would
then write z as a binary ezpansion.

T = .bbabs... (2.4)
For example,
1 1 0 0
2 T atmEtmTe
and
1 0 1 0
3 = §+§+§+§+ )
1

1
where the coeflicients for - are 1 for the even exponents of 3 and 0
elsewhere. Thus

L 1000

2 - .

3 2 11000
4 - .

L oot
3 - . 0
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In the general spirit of mathematics we denote the set of all
binary sequences by S.

S = the set of all binary sequences bybybs. . ..

That is, S consists of all sequences of 0’s and 1’s. For instance, S
contains elements like 100... and 0101 ..., but it does not contain
.333.

We define the unit interval (0,1) to be the real numbers that lie
properly between 0 and 1 on the real number line,

0 )={zreR|0<z <1}

Let us define a rather obvious function
f : (0, 1) — S

as follows. Given an z € (0,1), write z as a binary expansion as in
(2.4),
r = .b1b2b3 ey

and then define
f(.’E) = b1b2b3 .

Thus f(z) just drops the decimal point of the binary expansion for
z. Evidently given z € (0,1), f(z) is a binary sequence, so that
f(z) € S for each z € (0,1).

However, the value f(x) has some ambiguity surrounding it. For

1
example, let’s show that 3 has two binary expansions.

1 _ 1 0 0
—2' = §+§+§+...
0 1 1
= §+§+§+---.

This will require some trickery and guile that we will use several
times in the future. Given

LA
2 "2 sy
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1 1
let’s multiply by 5= 1 — - to realize the following equations. Use

the distributive law or your friend foil to do the multiplication.
N(2+i+2+
2/ \22 28 2¢ 7
R AR\YAUR T
- J\Z T

r ! +1 + +
_ 22 23 2
- 1 1+ 1+ +
| 2\ 22 23 24
( + 1+-£+-£+
. 2 23 24 25
1 1
{ T o938 T 94 T 95 T
1
)

Thus

1 11+1l+41_+ 1
2 92 1 793 T Toa T ) T o2

so that multiplication by 2 yields the equation

1 ! +1 ! +1 ! + _ !
22 T T 2
So, reader, which one is it? According to our definition of f,
there are two choices for f(x). Which choice do you make?

1\ _ f 1000 or
f(i)"{(n1i
The point here is that there should be no choice. The value f(zx)
should be unique, unambiguous, singular to z. If two values present
themselves, they should be equal. They might look different but
they should be the same thing. This is not the case here. The value
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1
for f (§> has on the one hand only 1 entry of 1, while on the other

hand it has infinitely many entries 1. As it is defined, the rule f
does not satisfy Condition 2 of the definition of function, so it is not
a function.

The only way to correct this deficiency is to take advantage of
the number of 1’s in these binary sequences. This, it turns out, is
all we need to change the rule f into a function. Define a rule

F:(0,1)—— S
related to f by requiring that
F(z) = bibybs..., where we choose the binary  (2.5)
expansion for £ = .bybybs ... with the
smallest number of 1’s.
Under this new rule F, the sequence 011 . .. is ruled out as the image

1 . } .
of 5 since there is a “shorter” binary sequence available. Hence

1 —
F{-)=1000....
(2> 000

This definition for the new rule F' avoids the ambiguity that the
rule f possessed.

Let us examine an operation on functions. Functions in abstract
sets cannot be added or multiplied, so we will not be dealing with
the addition or multiplication of functions as we might have done
in algebra. There is, however, an important operation on functions
called composition.

Definition 2.1.7 Let f : A — B and g : B — C be functions.
(Note that B serves as both the domain of g and the codomain of
f.) There is a function

gof : A——C

whose rule is

go f(z) = g(f(x)) for each x € A.
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For example, let f : R — R and g : R — R be defined by
f(z) =z + 1 and g(z?). Then

gof(z) = g(f(x)) = glz+1) = (z+1)°
and

fofm) = f(f(@) = fla+1) = (@+D)+1 = z+2

1
Example 2.1.8 Let f(z) = o Then

2 1z "
That is, f o f(z) = z.
Example 2.1.9 Let f(z) = /= and g(z) = z%. Then

z ifzx>0
-z fz<0

Joglo) = flale) = f) = V= {
Experiment with this.

Fog(—=1)= fg(-1)) = f((-1)}) = f(1) =VI=1= ~(~1),

while

fog(l)=flg(1) =f1*) =f)=Vi=1
You can check this formula for x = —2,2 to see that f o g(z) # z.
How do you reconcile this fact with what you know today?

Example 2.1.10 Let F : (0,1) — S be the function defined in
(2.5). Then F(x) is the binary sequence bybybs ... that defines z.
Define a function

G:S——{0,1}

by requiring that
G(b1bobs . ..) = by = the first entry in the sequence b1bobs . . ..
The composition GG o F' has the rule

Go F(z) = G(F(z)) = G(bibabs ...) = by € {0, 1}.
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Thus G o F is a function that assigns to each z € (0,1) either
a 0 or a 1, and it makes the assignment without ambiguity. We
challenge the reader to find the set of numbers z € (0,1) such that
G o F(z) = 1. Hint: Look at the definition of F. The answer to
this challenge is given at the end of this section.

We will need a notation for the set of all functions from A into
B.

Definition 2.1.11 Let A and B be sets. We let

B4 = the set of all functions f : A — B.

Let A = {a,b} and let B = {0,1}. We will write down all of the
functions in BA.

f(a)
h(a) =

0,f()) =0  gla)=10,g(b) =1
Lh(b)=0  k(a) =1,k(b) = 1.

Since we have completely exhausted the possible images for a and
b we have written a complete list of the elements of BA. Another
way of writing these functions presents itself.

Let us agree that each function f will be written as

f =[z,y] provided that f(a) =z and f(b) =y.
For instance,
f =11,0] means that f(a) =1 and f(b) =0.

Thus we can write down all of the functions in {0,1}{**} by sys-
tematically writing down the possible pairs [z,y]. They are

[0,0] [0,1]
(1, 0] (1,1].

We can then easily count the number of functions in {0, 1}{*®}
Recall that the cardinality of X is denoted by card(X). Then

Card({o’ 1}{a,b}) =4=2= card({O, 1})card({a,b})’
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which explains why we chose this notation.

Other examples are found by letting A = {a,b,c} and B =
{0,1}. To count the number of functions in {0, 1}{*b<} let us agree
to write the function

f:{a,b,c} —— {0,1}

in terms of its values at a,b, and ¢. Then f is denoted by

f=lz,y,2], where f(a) =1z, f(b) =y, and f(c) = 2.

For example, the function f such that f(a) =1, f(b) =1, f(c)=0
is denoted by
f=111,0].

The left entry in [1,1,0] is 1 because f(a) = 1. The middle entry is
1 because f(b) = 1, and the right hand entry is 0 because f(c) = 0.
Every function f : {a,b,¢} — {0,1} can be represented in this
way. This provides us with a very simple way to count the elements
in {0,1}{®b<} There are two possible values for each of the three
entries of f = [z, y, 2] so that there are 2-2-2 = 8 possible entries for
f and therefore there are 8 possible functions in {0, 1}{%¢}, That
is,

card(B*) = card({0,1}{**h) = 8 = card({0,1})cd{abed)

We leave it to the reader to write down the eight functions in B*.
As a further exercise, the functions in {0, 1, 2}{“"’} can be written
as
[z, ] where f(a) = z and f(b) = y,

where z,y are numbers in {0, 1,2}. Since there are three numbers
that can fill the two entries [z, y], there are exactly 3-3 = 9 functions
in {0, 1,2}{ab},

card(AB) = card({O, 1’ 2}{a,b}) — 32 — card({O, 1’ 2})card({a,b}).
Four of these functions are

(0,0, [1,0], [0,2], [1,2].
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The first function takes each of a and b to 0. [1, 2] is a function that
takes a to 1 and that takes b to 2. The reader is invited to list all 9
functions and their rules using the [z, y] notation that we described
above.

This is the answer to the G o F' challenge. You can use
the sum (2.4) to convince yourself that G o F'(z) = 1 exactly when

1< <1
=<z .
5=

2.2 Images and Preimages
Consider the function f: R — R defined by
f(z) =z

A moment’s thought reveals that

Let’s write that in a more useful notation.
{1 -1 ={1}.
Furthermore, if we recall that (—1,1) = {x € R| =1 <z < 1} then
F((-11) = {f(@)| -1<z<1} = {ylo<y<1}

The following picture may help you see this. The interval (—1,1)
defined by the slashes “/” is mapped into the interval [0, 1) defined
by the dashes “—” . The open circles o mean that z = -1, z =1,
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and y = 1 are not included.

O3
B
—

T

|

(2.6)

[

T T T 17771

8

STTTITTTTTTT
-1

VI B S B N} S for o]

A A A A A A A A
1

OO T T T

We will say that [0,1) is the image of (—1,1) under the function
f(z) = z?. Since (-1, 1) is everything that f(z) sends into [0,1) we
say that (—1,1) is the preimage of [0,1). Another example would
be that {1} is the image of {—1} and since {—1,1} is all that f
maps to {1}, {—1,1} is the preimage of {1}. In more general terms
we have the following definition.

Definition 2.2.1 Let f : A — B be a function and let X C A
and Y C B be subsets.

L f(X)={f(z)|z € X}. f(X) is called the image of X.

Y)={ze X|f(x)eY} fUY) is called the preimage
of Y.

Ifze A and y € B then we will write f(z) for f({z}) and f~!(y)
for f~! {y} Thus f(X) is the set of things that X is mapped
to and f~!(Y) is the set of things that map into Y. Picture (2.7)
is there to help you visualize images and preimages. Suppose we
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think of A and B as boxes and suppose f is an arrow between them.
Inside A is a box we call X and inside B is a box we call Y.

All that X maps to

A \ B

RN

A\

/ Ml

il

N

All that maps to Y

The arrows in picture (2.7) indicate that the box X maps to the tri-

angle f(X) and that the square Y comes from the rectangle f~*(Y").

In fact, everything that maps into Y is in the rectangle f~1(Y).
Here are more examples to illustrate these ideas.

Example 2.2.2 Let a : People of Earth — N be defined as
a(z) = age in years of the person = on January 1, 2005.
Then a(your author) = 50,

a™}(15) = {people z|a(z) =15}
= set of 15 year olds.
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Suppose that z is some individual on Earth whose age is 50. Then
a(zx) = 50 and hence

a”a(z)) = a7'(50)
= the set of all people having age 50.

Notice that € a~!(a(x)) but that « is hardly everyone who is 50.
We leave it to the reader to justify that a=!(200) = 0.

Example 2.2.3 In this example, let ¢ : places on Earth — R be
the function that takes a place on Earth z and returns the temper-
ature t(z) in degrees Celsius of that place at 12 noon on January 1,
2005. Then t(outside) = 20° C,

t71(30°C) = {places z|t(z) = 30°C}
= {places at which the temperature is 30°C}

and

t71(100°C) = {places z|t(z) = 100°C}
= {places at which the temperature is the
boiling point of water at sea level}.

Notice that t~1(100°C) contains the places where people at sea level
are boiling water. It also contains those places, like volcanoes and
geysers, at which the temperature is that of boiling water.

Example 2.2.4 An example from trigonometry is given by the
function f : R — R defined by f(6) = tan(d), where tan is the
tangent function. We have already defined the tangent function for
angles 8. (See page 40.) Then f(0) = tan(0) = 0, while

f71(0) = the set of all angles whose tangent is 0
= {..,—2n,-~m0,m2r,...}
= {n7m|n € Z}.

Here are some results on images and preimages that we are using
as educational tools to prepare the reader for the more advanced
arguments presented in the next chapter.



56 CHAPTER 2. FUNCTIONS

Theorem 2.2.5 Let f : A — B be a function. If Y CY' C B
then f~YY) C f~1(Y").

Proof: We must show that every element of f~'(Y)isin f~*(Y").
Let £ € f~}(Y). By definition of preimage f(x) € Y, and since
Y CY', f(z) € Y. Then z € f~}(Y’) by definition of preimage.
Hence f~*(Y) C f~1(Y’), which completes the proof.

Look at what we did in the above proof. We started with an
element z € f~!(Y) and we evaluated what that means to us. The
definition of the preimage must be used. It tells us that z maps
into Y. That is, f(z) € Y. The subset hypothesis is now used.
f(z) € Y C Y’ implies that f(z) € Y. Since  maps into Y’ then
z is in the preimage, the set of all that maps into Y': z € f~1(Y”).
Hence f~Y(Y) c f~1(Y").

Notice the detail with which I am arguing. This detail is nec-
essary for two reasons. First, we cannot know what the other is
thinking so I must show all of the thoughts that I want you to
think. Second, before we can skip steps without fear of error set-
ting in, we must first pay our dues with this type of detail. I hope
you are paying dues. The later material will more than make up for
the present effort I am asking you to exert.

Theorem 2.2.6 Let f : A — B be a function and let X C A.
Then X C f~1(f(X)).

Picture (2.8) is an illustration of what we will show in the proof
of this theorem.

Proof: We must show that each element of X is an element of
F~Hf(X)). Let ¢ € X. By the definition of image f(x) € f(X).
For the sake of clarity let W = f(X). Then f(z) € W. The
definition of preimage and the definition of W show us that

z € fTHW) = fTHf(X)).
Thus X C f~!(f(X)), which completes the proof.

Once again we will detail and motivate the given proof. To
prove that X C f~}(f(X)) we must show that each given z € X
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is in f~}(f(X)). Let z € X. It must be clear to you by now that
f(z) € f(X). Thus z is a part of all that maps into f(X). Put
symbolically, z € f~1(f(X)). We conclude that X C f~!(f(X)).

All that maps to f(X)

FHA)) /

(2.8)

Example 2.2.7 Here are two examples of how f~(f(X)) can be
much larger than X.

1. Consider the function f: R — R defined by f(z) = z?, and
let X = {2}. A small calculation reveals that f(2) = 4. Thus
2 € f71(4). Theset f~1(4) is the set of all  such that z? = 4.
A moment’s thought will show you that f(2) = f(-2) = 4
and that {—2,2} = f~}(4). Thus X = {2} # {-2,2} =
FAX)).

2. Let a : People on Earth — N be the function that assigns
to each person x on Earth his/her age as of January 1, 2005.
Then a(your author) = 50 while a™}(50) is the set of all 50
year olds on the planet. Hence a=!(a(your author)) = a7!(50)
is quite a large set, not equal to just {your author}.
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This is why the boxes in diagram (2.8) properly contain each
other.

There is a relationship between subsets and the composition of
functions. Notice the reversal of order in the functions f and g in
the next result. This is also a test. The only question on this exam
is: Have you learned enough of the basics to understand a more terse
mathematical proof ? Before you read on, remember that sets A and
B are equal, A = B, exactly when A ¢ B and B C A. Nothing
less than these two conditions may be proved if we wish to conclude
that A = B. You will start with an z € A and prove that it is in
B. Then you will start with an z € B and prove that it is in A.
Notice that in the next several proofs this is exactly what we are
practicing.

Theorem 2.2.8 Let f : A — B and g : B — C be functions,
and let Z C C. Then

(g0 NNTHZ) = 97U (2)).
Proof: To prove the equality we must show that

(g0 N)7H2Z) C fH97(2)

and that
fU7NZ) € (g0 HTH2).
We will prove the inclusion (go f)~1(Z) c f~*(g7}(2)).

Let ¢ € (go f)~}(Z). By definitions of composition and preim-
age,

9(f(z)) =(go f)(z) € Z.
Since g(f(z)) € Z, f(z) € g7(Z), and then z € f~l(¢7(2)).
Hence
(9o N)™H2) c 97U (2)).

Conversely, we will prove that f~1(g~1(Z)) C (go f)~*(Z). Sup-
pose that z € f~1(g~1(Z)). We must show that z € (go f)7}(2).
Now z € f71(g7}(Z)) implies that f(z) € ¢g7'(Z) and hence that
g(f(z)) € Z. By definition of o we have

(go f)(z) = g(f(z)) € Z,
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so that
€ (g0 f)N(2)
Consequently,
FH97H(2)) C (go /) (2),
and therefore f~1(g71(Z)) = (gof)~1(Z). This completes the proof.

Finally, as an exercise in the use of the quantifiers for all and
there exists, we will prove the following theorems.

Theorem 2.2.9 Let f: A — B be a function. If {Y, |n € N} is
a family of subsets of B then

U i) =5 (U Yn).

neN n&N

Proof: In shorthand notation, we will first prove the inclusion

U ritva) ¢ f‘1<U Yn>.

neN neN

Let
ze ) ().

neN

By the definition of U, = € f~!(Y,,) for some m € N, so that
z € f~1(Y,). By definition of preimage, f(z) € Yy, so that

f@ye | JYa

neN

by definition of U. The definition of preimage shows us that

ze f! (U Yn>
neN

U riv) f’l(UYn>.

neN neN

and hence that
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Conversely, we will prove the reverse inclusion

! (U Yn) cJ ).

neN neN
Let

ze f (U Yn>.

neN

The definition of preimage implies that

f@) e JYa

neN

and the definition of U implies that f(z) € Yy for some k € N.
Then z € f~(Y}) for that k£ € N, and so

ze ().

neN

Consequently,

f'1<UYn> c U o

neN neN

and therefore

f'1<UYn> = | row.

neN neN
This completes the proof.

Here are a few exercises that will build your mental mathematical muscles.
The reader can sample the thrill of the creative and discovery processes by
providing proofs of all these results. Rather than repeat the hypotheses over
and over again, let us agree that, for each of these exercises, f: A — Bisa
function, that X, X’ C A, and that Y, Y’ C B.

1. If X € X’ C A then f(X) C f(X').
2. f(frUY) cy.
3. If X, X' € Athen f(XNX') C f(X)N F(X').
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If X, X' C Athen f(XUX') = f(X)U f(X').
IfY,Y' C Bthen f~1(Y NY') = f~1(Y)n fF~1(Y").
IfY,Y'C Bthen f~X (Y UY') = f~1(Y)U f-1(Y").

If {X,|n € N} is a family of subsets of A then f(U,cy Xn) =
Unen f(Xn).

8. If {Y, |n € N} is a family of subsets of B then oy f~'(Ya) =
7 (Mnen Ya)-

e e

2.3 One-to-One and Onto Functions

Functions come in a variety of different colors. For instance, f(z) =
z? defines a function on R such that f(—1) = f(1). That is, f
takes two different numbers to the same number. The function
f(z) = z + 2, on the other hand, takes different numbers z # 2’ to
different numbers z + 2 # 2’ 4 2. When you stand in a particularly
long line to see a movie and you count the number of people in
front of you, you are forming a function f that associates a natural
number n with a person in that line. Then f(1) is the first person
in line, f(2) is the second person in line, and so on. In this function
we see that if n # m then the people f(n) and f(m) are different.
One person will not hold two different places in line.

This type of counting function goes back to the first humans to
herd animals. As the goats would enter the pasture land the ancient
goatherd would drop a rock or stone in a pile. In this way he sets up
a function from the goats to the pile of stones. As the goats leave
the pasture he removes one stone for each goat that passes. If he
has stones left he might conclude that the wolf has found one of his
goats. If there are more goats than stones he might conclude that
he has picked up another goat from somewhere. Different stones
are associated with different goats. Thus when the goats and the
stones match up element by element he concludes that he has just
as many goats that evening as he had that morning.

The next definition identifies this property of functions.
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Definition 2.3.1 Let f: A — B be a function.

1. We say that f is a one-to-one function if
f(z) = f(2') implies that ¢ = 2’
or equivalently if

x # & implies that f(z) # f(z').

Said in a colloquial manner, f is one-to-one if different ele-
ments of A map to different elements of B.

2. We say that f is an onto function if
given y € B then we can find an ¢ € A such that f(z) = y.

In an informal way, f is onto if every element in B is the image
of an element from A.

Consider what this definition represents. We have uncovered a
pair of properties about functions that the reader probably has not
encountered before. This discovery is the tip of an iceberg, or a
general principle, that is called abstraction. Abstraction is one of
the processes through which mathematics grows. For example, you
can study lines on a sheet of paper and you will understand lines
and linear processes. But once you abstract lines to linear approx-
imation you have discovered the calculus, Now you can leave that
sheet of paper and study nature and the universe around us. If you
allow your definition of line to be abstracted you grow from points
and lines on a plane to studying the geometry of points and lines
on a sphere, or a globe. Lines here would be different because they
must curve along the sphere. Quite a change, isn’t it? Abstraction
usually has this effect on mathematics.

Some examples will help you visualize one-to-one and onto func-
tions.

Example 2.3.2 Start with a function f : {a,b} — {z,y, 2} de-
fined by
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A glance at the definition shows us that f(a) # f(b) so that f is a
one-to-one function. f is not an onto function since f(a), f(b) # 2.
That is, z is not an image of an element from {a,b}.

Define a function f : {a,b,c} — {z,y} by

fla)=z flo)y=z f(c)=y.

Since f(a) = z and f(c) =y, each element of the codomain {z,y}
is an image of an element from {a, b, c}. Thus f is an onto function.
f is not a one-to-one function since the different elements a # b
map to the same element f(a) = f(b) = z.

You may recall that we examined sets that could be matched
element by element. The matching is a limited way of describing
a function that is both one-to-one and onto. These one-to-one and
onto functions will thus replace the previous notion of an element
by element matching of sets.

Example 2.3.3 Let f: R — R be defined by f(z) =7z + 6. We
claim that f is both one-to-one and onto.

1. f is one-to-one: Suppose that z, 2’ € R are such that f(z) =
f(z’). Then 7z + 6 = 7z’ + 6 implies that 7z = 7z’. We can divide
by 7 to show that £ = x’. As claimed f is one-to-one.

2. f is onto: Suppose that y € R. We must find a number z € R

such that f(z) =y. Let z = # € R. A little algebra shows us

that
r@ =1 (1) =1(450) +o-w.

Thus f(z) =y, so that f is onto, as claimed.

In the above example we made use of the arithmetic of 7 and
6. We added and subtracted at will and we divided by 7 like there
was no problem with it. (There isn’t.) But now let us abstract this
problem. We will need to acknowledge the fact that we could divide
by 7 because 7 # 0. We also need to see that 6 — 6 = 0. Let’s see
how that is used in a more abstract setting.

Example 2.3.4 Let f: R — R be defined by f(z) = mz + b for
some m # 0. We claim that f is both one-to-one and onto.
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1. f is one-to-one: Suppose that z,2’ € R are such that f(z) =
f(z'). Then

mr+b = ma +b
(mz+b)—b = (maz’+b)—b
mz = mz
mz  ma’
m m
z = 7.

We could divide by m in the second to last step only because we
chose m # 0. As claimed f is one-to-one.
2. fisonto: Suppose that y € R. We must find a number z € R

—b
such that f(z) =y. Let z = y—T—n—— Since m # 0, we can divide by
m to form y, and so x € R. A little algebra shows that

fo =1 (=) =m (L2 o=

Thus f(z) =y, so that f is onto, as claimed.

Our choice of z in the above example is typical of mathematical

proof. Before setting down to write this little mathematical essay,
z—b
several drafts of the essay were made. We found the value z = ——

before we set pen to paper to write out our proof. Our choice (T)rfL z
may at first seem magical, coming from nowhere, without motiva-
tion as it did, but that is because you were not there while I worked
out all of the details in the drafts of this proof. That is the sign of a
well written well constructed argument. You have done all of your
homework surrounding the proof so that when you attempt to type
that final draft you can appeal to values as if they come naturally
from the ether as opposed to the preparation. I will use this style
of mathematics as little as possible, but I will use it.

Example 2.3.5 Let f: R — R be defined by f(z) = z2. We will
show that f is neither one-to-one nor onto.

1. f is not one-to-one: We need only produce two different
numbers that map to the same number. f(—2) = 4 = f(2) shows
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that f is not one-to-one. (Where did —2 and 2 come from, reader?
If you write out a draft of this proof yourself you might find their
origins.)

2. f is not onto: We need only produce one element in R that
cannot be written as f(z). Since z? > 0 for all z € R, f(z) = 2? #
—1 for any =z € R. (A little preparation gives us the value —1 as a
good example of a number that is not an image under f(z) = z2.)

A simple change of the domain or the codomain can signifi-
cantly change the function. That is, by changing the domain and
the codomain of a function that is neither one-to-one nor onto we
change the function into one that is both one-to-one and onto. As
we said above these one-to-one and onto functions are the element
by element matchings that we encountered earlier as functions for
counting sets. Such a special function deserves a name. We use the
French term. A function is a bijection if it is both one-to-one and
onto.

Definition 2.3.6 The function f: A — B is a bijection if f is a
one-to-one and onto function.

2.4 Bijections

Some functions on finite sets will further develop your intuition
about bijections, or one-to-one and onto functions.

The function f: {a,b, ¢} — {x,vy, 2} defined by
fa)==, fb)=y, flc)=2
or by a list of assignments

a —— X
b}—>y

c — Zz

is a bijection since a glance at the list shows us that different ele-
ments in the domain {a,b, ¢} are mapped to different elements in
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{z,y, 2}, and each element in the codomain {z,y, z} is the image of
an element from {a, b, c}. We might have said as in Chapter 1 that
there is an element by element matching of {a,b, ¢} with {z,y, 2}.
Our use of a bijection makes this intuitive matching of elements
mathematically concrete.

Example 2.4.1 Example 2.3.3 shows that if f : R — R is defined
by f(z) = 7x+6 then f is one-to-one and onto. Thus f(z) = 7z +6
defines a bijection f: R — R.

Example 2.4.2 Example 2.3.4 shows that if m # 0 is a real num-
ber and if f : R — R is defined by f(z) = mz + b then f is one-to-
one and onto. Thus f(z) = mz + b defines a bijection f: R — R.

Example 2.4.3 Let R* be the set of positive real numbers, and
1
let f:R* — R* be defined by f(z) = p We will show that f is

a bijection.

1. To show that f is one-to-one suppose we have z, ' € R* such

1 1
that f(z) = f(2'). The definition of f shows us that then S=

and so a little algebra shows us that £ = z’. Thus f is one-to-one.
2. To show that f is onto begin with a y € R*. We must choose
an £ € R* such that f(z) = y. Since y € R*, y # 0, so we can

form the real number z = = € R*. Observe that

to conclude that f is onto. Therefore f is a bijection.

Example 2.4.4 Recall that R* is the set of positive real numbers.
Let g : R* — R™* be defined by g(z) = z%2. We will show that g is
a bijection. That is, it is both one-to-one and onto.

1. g is one-to-one: Suppose that z,z’ > 0 are such that g(z) =
g(z'). Then z% = (2)2. Since z, 2’ > 0 we can take square roots to
see that

c=Vzz=\/(z)2 =2

Thus g is one-to-one.
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The above chain of equations holds only because z,z’ > 0. To
see this notice that 12 = (—1)? while 1 # —1. Only the positive
numbers z satisfy vz2 = z.

2. g is onto: Let y € R*. Since y > 0 we can let z = /y € R*.
Then

9(z) = (v¥)* =,
which shows us that g is onto. (Where did that value x come from?
Obviously, it is from the preparations we made before writing down
the final draft of this proof.)

These examples concerning the rule z? should be compared.
Even though the functions f : R — R and g : R* — R* have
the same rule, namely, f(z) = g(z) = z?, their domains and their
codomains are different. This difference makes g both one-to-one
and onto, while f is neither one-to-one nor onto. These must be
different functions because they behave differently. They enjoy dif-
ferent properties. Thus the sets used to define a function will have
a significant effect on the properties possessed by the function.

Example 2.4.5 Example 2.3.2 shows us that the function
f:{a,b} — {z,y, 2} defined by

fla)=z, flo)=y

is one-to-one but not onto. Thus f is not a bijection.
However, the function g : {a,b} — {z,y} defined by

gla)=z, gb)=y

is a bijection. Notice that f and g have the same rule. The difference
in their codomains makes them different functions.

Example 2.4.6 By Example 2.3.2 the function f : {a,b,c} —
{z,y} defined by

fla)=z, fb)== [flc)=y

is onto and not one-to-one. Thus f is not a bijection.
However, the function g : {b,¢} — {z,y} defined by

gb)y=1z, glc)=y

is a bijection. Again we see that a change in domain changes a
function that is not one-to-one into a function that is one-to-one.
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2.5 Inverse Functions

The operation of composition go f looks very much like a multipli-
cation of functions. It is natural to ask if we can divide functions
as well. Unfortunately, the division of functions is not defined in
general. Thus we must examine an analogous operation, namely
the undoing of a function. We consider each function f as a rule
that manipulates or that changes an input value z. The value f(x)
is seen then as some kind of variation on . Qur inverse functions
will be this manipulation in reverse. If f squares then its inverse g
takes square roots. If f adds 3 to z then g will subtract 3 from z.
Do you see it? The inverse of f is the function that performs the
opposite manipulation that f performs.

The best solution in our search for an inverse function is to find
the largest class of functions that have inverse functions. Specifi-
cally, we will discuss functions for which the composition division
exists. Within this collection a specific function f will be associated
with a function ¢ such that

go f(2) = g(J(x)) = « and
fog(z) = f(g(a)) = .

In this case we will say that g is the inverse of f. This inverse is
not found by dividing by f but by undoing whatever it is that f
does. It happens that this kind of functional inverse exists only for
bijections.

Definition 2.5.1 Let f: A — B and g : B — A be functions.
Notice the change in the domain and codomain of f and g. Then g
is called the inverse of f if

1. go f(x) =z for eachx € A, and
2. fog(y) =y for eachy € B.

In this case f is also the inverse of g. If f has an inverse then we
say that f is invertible.

Observe that the compositions g o f and f o g are defined since
their domains and codomains match up.
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Example 2.5.2 Let f: R — R be defined by
f(x)=mx+b

for some numbers m # 0 and b. Define a function g : R — R by

Since m # 0, g : R — R is a function. We will show that g is the
inverse of f.

Let x € R. We must show that go f(z) = fog(x) = z. A little
algebra shows us that

gof(z) = g(f(z))
= g(mx +b)
(mz+b)—b

m
mx

and that

foglx) = f(g9(x))

—m m—b)_b
m
(x—=b)—b
x.

Thus g is the inverse of f.

Now where do you suppose the inverse ¢ of f came from in
the above example? In preparing for this example, I assumed that
f(z) = mz + b had an inverse g(z). Then I calculated as follows.
Since f(g(x)) = = we have

m-g(z)+b=uz.
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Now solve for g(z).

m-g(z)+b = =z
m-g(z) = z-b
z—b
9(z) = -
The only reason that g(z) can be found in this case is because
m # 0. If m = 0 then f is not a bijection and its inverse g cannot
be found.

The above theorem connects bijections with inverses. Try think-
ing of its proof as another examination of how far your mathematical
thought processes have progressed over the last 10 pages or so. This
approach is drier than the examples you have met in this chapter
and the presentation will cause you to think about my line of rea-
soning. The idea of choosing values z or y in some previous draft
is used throughout this argument. However, all of the details are
there and if you can read it without too much difficulty then you
are ready for the next chapter, where we begin our investigation of
infinite sets.

Theorem 2.5.3 Let f : A — B be a function.
1. If f is invertible then f is a bijection.

2. If f is a bijection then f is invertible.

Proof: 1. Suppose that f is invertible. We must show that f is
one-to-one and onto. Since f is invertible it has an inverse g.
Suppose that f(z) = f(z’) for some z,2’ € A. Then

9(f(z)) = 9(f(2)),

and since ¢ is the inverse of f we have

Thus f is one-to-one.
Let y € B, and let z = g(y). Since g is the inverse of f we have
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so that f is onto.
Therefore f is a bijection.
2. Suppose that f is a bijection. We must construct a function

g that will serve as the inverse of f. Define a rule g from B into A
by

g(z) = y exactly when z = f(y).

This is a reasonable definition for an inverse. We must show that g
is a function.

The definition of function (page 38) asks us to define g on all
of B. Solet x € B. Since f is onto there is a y € A such that
z = f(y). Then by definition of g, g(z) = y.

Also the definition of function askes us to show that g(z) is
exactly one value. To prove that there is exactly one of something
you assume that you have two perhaps equal things, and then you
prove that they are the same. So suppose there are two elements
¥,y € A such that

!

g(z) =y and g(z) =y

By the definition of g,

z = f(y) and z = f(¥)

and because f is one-to-one, y = ¢’. Thus g(z) is exactly one value.
Therefore g : B — A is a function.
To complete the proof we must show that ¢g(f(z)) = z and that
f(9(y)) =y for eachz € A and y € B.
Let x € A and write

flx)=y.
Then, by the definition of g,

so that
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On the other hand, if y € B is given then write z for g(y). That
is,
9(y) ==
By the definition of g, y = f(z), so that

fla(y)) = f(x) =v.
Hence g is the inverse of f, which is what we had to prove.

The above theorem can be used to anticipate the existence of
inverses without telling us what that inverse might be. For instance,

f(z) = mz + b where m # 0

is known to be a bijection. Thus the above theorem tells us that
f in invertible. It does not tell us what that inverse might be. We
found (see Example 2.3.4) that

is the inverse of f.
The function

h(z) : R* ——— R* such that h(z) = z°

is known to be a bijection. (See Example 2.4.4.) Thus h has an
inverse. Its inverse can be found by emulating the proof of the
above theorem. Solve the equaticn

T=9
for y. Of course, we just take a square root so that
VT =y.

Hence
s(z) =z

is the inverse of A.

Now that we have plowed through the preliminaries, let me
present a story.
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When we learn to play a game like checkers or chess we play with
a person learned in the ways of the game. As we play we learn the
rules over several initial games. It might take three or four games
to learn the rules. There is a deeper understanding that comes with
playing more games. The only way to learn the game well is to
lose a lot of games to a better player. If we keep coming back to
challenge this master of the game we eventually will learn enough
to challenge him or her. However, maybe you don’t play games like
checkers or chess. Maybe you like video games.

How do we learn to play video games? We start with a two
dimensional character who moves across the screen prodded by our
control box. Initially we play for 15 seconds and then we die. Do we
give up? Do we go onto something else? We do not. We hit reset
and begin again. This time we get a little further. Eventually, after
resetting the game for what feels like an infinite number of times,
we reach the end of the game. We defeat the Monster who was
holding your Sister with the Golden Hair hostage, and we rejoice.
We won the game. But it took a while. It took a lot of time.

I ask you to devote a fraction of that energy into the topics that
we will cover in the next few chapters. The derived rewards will be
far more than those enjoyed by checkers or video games, I assure
you.



Chapter 3

Counting Infinite Sets

3.1 Finite Sets

The natural numbers are the numbers introduced by the Hindu and
Arabic cultures. Today they are written as

N=1{0,1,2,3,...}.

This is an implied list. The three dots, ..., indicate that the pat-
tern continues indefinitely, or without stopping. Although this set
appears to be small it contains numbers that we do not encounter
in our daily lives. Some examples of natural numbers that you have
probably not met before are:

1. The number of people on the Earth, about 6,000,000,000 or
6 x 10°.

2. The Gross National Product of the USA is about 100 trillion
or 10! dollars. This is a 1 followed by 14 zeros,

100, 000, 000, 000, 000.

3. The distance across the observable universe, about 4 x 10!°
light years. This is a 4 followed by 10 zeros. It takes light
4 x 10'° years to travel this distance. This number doesn’t
have a name, only a scientific designation.

4. The number of fish in the ocean on January 1, 2003. Even
though we can’t write down this number, it is still a number
and we can refer to it by a symbol, say, a.

75
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5. The number of grains of sand on the Earth. We will figure
out how large this number is, but I think we can all agree that
even though the number exists, it is impossible to write the
exact number down.

Let us see how these numbers compare. To do this we will
have to expand your imagination a bit. Once enlarged we will use
the natural numbers {0,1,2,...} to write down some really large
numbers. Suppose we write down the largest number that you can
imagine, say,

X.

We can get a larger number by adding 1:
X+ 1

How big was X7 Was it the number of people on Earth, 6 billion?
Was it the speed of light, 186,000 miles/second? Maybe it was a
light year, the distance light travels in a year, or about 2.6 x 10°
meters. In miles that would be 1.6 x 10°. Now those were large
numbers. But this is hardly big enough. We can produce a larger
number by adding 1:

6, 000, 000, 001.

Not really much larger, though, is it? Maybe we can form an expo-
nential number:
(6 x 10%)2 = 36 x 108,

This is larger than a light year since it has 18 zeros following the
36. We can make a larger number:

36 x 1018 + 1.

Ones are not what we need here. I want numbers that grow so large
that we cannot print them with meaning. Let me explain that with
examples.

Now that you have seen how big these numbers can be, let us
write down implied lists of these numbers called sequences. One
such sequence starts with 100:

100,101, 102, 103, 104, . . ..
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These numbers do seem as large as they might have seemed to you,
but they are getting larger. They just grow slowly. Adding 1 moves
us only a little bit when compared to our first number.

So let us take multiples of 100:

100, 200, 300,400, . ...

The second number is twice as large as the first number, and the
third number is three times as large as the first, etc. Once you’ve
done this 100 times you have reached a number that is 100 times
larger than 100. This is the number

100 x 100 = 10, 000.

These numbers get larger more quickly than the numbers do in
the sequence 100, 101, 102, 103, ..., but they are still quite small
compared to the numbers we can form.

The sequence

100, 1002, 1003, 1004, . .. (3.1)

gets large relatively quickly. Each time we produce another entry
in this sequence we add 2 zeros to the previous entry. The first
number has 2 zeros, the second number has 4 zeros, the third has
6, the fourth number

100, 000, 000

has 8 zeros, and so on. The number 100? is already as large as the
hundreth entry in the sequence 100, 200, 300, 400, . ... The hundreth
entry in the sequence 100, 1002, 1003, 1004, ... is 100'%°, which is a
100 followed by a hundred zeros. These numbers are getting larger
in magnitude with each entry in the sequence. So things are quickly
getting large, but maybe the values are not large enough.

For the next demonstration we will write

100 = 102

The reasoning here is that the exponential form is more easily ma-
nipulated. Consider the sequence

010102

, 10

oto?

102,10 10!
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of exponents of 10. These numbers get large so fast that the second
one, the number

10 =1 followed by a hundred zeros

is too large to comfortably print in this space. It is just a 1 followed
by 100 zeros, but the usual way of writing it down as 1,000,... is
utter folly. Try to write down 10'% as a 1 followed by 100 zeros just
to get the feel for how useful this exponential notation is for this
number. No one can read that many zeros with meaning. Did we
read 99 zeros or did we read 100 zeros? This number 10'% is larger
than the number of grains of sand you would need to fill a bag as
big as the Earth. (More on that sand number later.) It is hard to
understand just how big the other numbers are in this sequence.
And yet each of them is finite.

Now let us compare the sizes of the numbers in the different
sequences. We will all agree that

10"% +1 < 2 x 1019 < 10%° < 10199,

One way to see that a number z is large is to see how small its

1
reciprocal — is. The number 10'% is so large that if you used your

x
calculator to find a decimal equivalent for the fraction

1
10100

your display would probably read 0. And yet this number is not 0,
no matter what the display says.

Now that we have some large numbers we can examine how large
the relatively small numbers 10! and 101'® are. We will use the
sand that makes up the Earth to give us all a mental picture of
these numbers.

To write down the number of grains of sand on the Earth we
will have to use scientific notation. Scientific notation is the use of
powers of 10 to abbreviate numbers that have a daunting length.
Certainly we can write down

10.
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This number is large if you happen to be 9 years old. We can also

write
10% = 100.

One hundred is a large number if you earned a 75 on your last math-
ematics examination, but it may not require the scientific notation
10%2. Larger numbers look like this:

10* = 1,000, 000, 000, 000, 000.

You see that 10'® is a more compact way of writing 1 followed by
15 zeros. As we indicated before,

10100

is a more practical method for writing down that number. It is an
example of a number that can only be written in a meaningful way
as a power of 10.

Now that is one large number. And that is where we draw the
line. One hundred zeros is beyond the patience of most people.
Scientific notation prevails.

Small numbers can also be written in scientific notation. For
instance,

107 = 1
1072 = .01 notice the 1 zero.
107'% = 0000000001 notice the 9 zeros.
10719 = 4 decimal point “.” followed by 99 zeros and then a 1.

The only useful way to write down 1071% is as a power of 10. In
other words, there are some numbers that can only be realized in
scientific notation.

The reader may ask: “Why examine this? Surely 10'® and
10719 are unique enough that they do not apply to anything in
the real world.” This is not the case. For example, when banks
transfer sums of money between themselves they need to encode
their transaction. They need to hide this little bit of business from
the rest of the world. The numbers used to encode have more than
100 digits. That is, in order to transfer information between banks,
a 100 digit number, a number larger than 10'% is required. Just
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how this encoding takes place is too far afield for our elementary
intuitive discussion.

Another large number is found in chemistry. There are about
6 x 102 atoms per mole of matter. All we need to know about
a mole of matter is that it is a fundamental unit of measurement
in chemistry. There are about 10?® atoms in your body and about
108 = 108%10 protons, neutrons, and electrons exist in the space of
the observable universe. This is the fourtieth entry in the implied
list 100, 1002, 1003, . .. above, or a 1 followed by 80 zeros. The point
is, we have discovered something new. Numbers with up to 100
digits have a very practical purpose.

The story goes that two mathematicians and a child were sitting
around the kitchen table one afternoon when one adult asks the
other just how many grains of sand there are on the Earth. To
make this problem something we can see in our mind’s eye, suppose
we have a typical grain of sand. The typical grain of sand has the
following dimensions.

1. weight of one grain of sand = 1072 grams.
2. diameter of one grain of sand = 10~ meters.

We duplicate this grain many times over until we have a bag of sand
that, in our minds eye, is the size of the Earth. By size I mean that
the bag of sand and the Earth have the same size and shape and
mass. The question we are asking now becomes: “How many grains
of sand do we need to fill a bag that large?”

The grain of sand is light, but not too light. It seems that 100
copies of this grain of sand weigh

100 x 1072 = 102- 1072 = 1 gram.

So 100 grains of sand would not make a large or heavy bag. Suppose
we have 1 trillion or 10" copies of this grain of sand. Then the mass
of that bag of sand is

1 trillion - 1072 = 10'%2.1072% = 10'272 = 10%°

or 10 billion grams. Now that is a large number of grains of sand
and yet modern computer hard drives have many more than 10
billion bytes (10 gigabytes) of available storage. So this number is
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still something you might have in front of you right now. Suppose
that we have 10'%? copies of that grain of sand. Then the mass of
that bag of sand is

10192. 1072 = 10922 = 10'® grams,

which it turns out is pretty close to the mass of the Earth, so we
can say that there are about 101°% grains of sand on the Earth.

The mathematicians I mentioned above were so impressed by
this number that they asked a nine month old child to name the
number. The child said googol and that name stuck.

The number 10'% is called a googol.

Even though we have answered our question of just how many
grains of sand make up the Earth, that is not the end of the story.
As mathematicians will do, they asked for some kind of concrete
realization of the number googolplez.

The number 101" is called a googolplex.

Let us demonstrate just how large a googolplex is.

For this demonstration we will need a common object from
around the house, toilet paper. But this roll of toilet paper has
a special printing on it. On the first square of paper is a 1 and on
each following square there is a 0. The roll contains enough squares
so that the number 1 followed by all of those zeros is a googolplex.
Just how large is that roll? It is so large that you would never run
out of this household necessity. This roll could not be kept in your
house, it is too large. You might try keeping it somewhere on your
block. No. The roll is much larger than that. Perhaps the mayor of
your city would allow you to use the city as a storage for this roll.
This also is too small. The roll expands beyond the boundaries of
any city. How about the country you live in? The roll is larger
than that. Perhaps you would keep it on the North American con-
tinent. Nope. Too small for this roll. Let us jump and ask if the
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Earth will hold it. No. The Earth is too small to contain such a
roll. Be patient, we have a long journey to make here. Perhaps the
roll would fit into the solar system as encompassed by the orbit of
Pluto? This roll is too big to be kept in that space. Perhaps the
Galaxy is large enough to encompass this roll. No. The roll will
spill out into intergalactic space. How much larger should we go?
Is this roll large enough to fit into the observable universe? Now
that would be one huge roll of toilet paper. And yet this roll is
too large to fit into the observable universe. We are faced with the
following thought: This roll is larger than our physical universe can
hold. That googolplex is one large number. It would seem that a
googolplex is a number for which there is no physical significance.
However, it is still a small value when compared with numbers like

the exponential
logoogolplex

I can’t even begin to hint at how large that monster might be. These
numbers are large but they are still finite. The numbers that we
will encounter in the next section, called infinite cardinals, outstrip
these natural numbers for size.

The numbers googol and googolplex seem to have struck a nerve
with modern American culture. The numbers turn up in cartoons,
movies, and a number of novels published in the United States. This
is the first example I know of an obscure mathematical idea that
appears in a children’s cartoon as well as adult entertainment.

3.2 Hilbert’s Infinite Hotel

In Chapter 2 we started a process that would eventually define each
natural number n from nothing. Thus we will assume that we have
constructed the set

N={0,1,2,3,...}
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of natural numbers. To decide what an infinite set is, we first decide
what a finite set is.

Definition 3.2.1 Letn € N. We say that the set A has cardinality
n and we write

card(A) = n

if there is a bijection f : A — {1,...,n}. The set A is finite if
card(A) = n for some n € N.

Example 3.2.2 card({e}) = 1 since every function f : {e} —
{1} is a bijection.
The set {e,:} has cardinality 2 since the map

fi{e:} —{1,2}

defined by
f(e)=2 and f(:)=1

is a bijection.

Example 3.2.3 We claim that N is not a finite set. Even though
this is an intuitively obvious fact, mathematicians require some kind
of justification or proof. We will show that there are no bijections
from f: N — {1,...,n}. To do this we will show that no onto
function f: N — {1,...,n} is a one-to-one function. (In this way
f cannot be both one-to-one and onto.) To prove that f is not
one-to-one we will find two different numbers z and z’ that map to
the same value. That is, we must produce x # z’ € N such that
f(@) = /().

Given an integer n > 0, suppose we are given an onto function
[N —{1,...,n}. There are z,,...,z, € N such that f(z,) =
1,..., f(n) = n. Since {z1,...,z,} is a finite set of numbers it has a
largest number. We will assume that this number is z;. Since z; is
the largest element and since z;+1 >z, ,+1 € {z1,...,z,}. But
because z; +1 € N, f(x; +1) € {1,...,n}. Hence f(z;+1) =k =
f(zy) for some k € {1,...,n}. Since ; + 1 is not in {z,,...,z,},
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z1 + 1 # xk, but we also have f(x; + 1) = f(zx). This is what we
wanted to prove. Therefore f is not one-to-one.

Subsequently, there can be no bijections f : N — {1,...,n}.
Since n was arbitrarily chosen (i.e., there is no special property
about n), N is not a finite set.

Let us look at that proof again. A specific n is called for. Sup-
pose that f : N — {1,...,101} is a bijection. Then there are
natural numbers {z;,...,z101} C N such that f(zx) = k. There is
a largest number r € {z,...,z101}. “What made you do that?”
you ask. “Writing and rewriting this example enables me to do
that,” I respond. It, z, need not be z,3,. The number z is just
the largest number in {zi,...,z101}. “Why look there, why look
for 7 What inspired you to do that?” you ask. “My preparation
of this proof is what inspired that choice,” I say. That and a num-
ber of years of experience. Because x < z + 1 we conclude that
z+1¢{x,...,z1m} (« is the largest thing in that set). Hence
z + 1 # i for any of the zx € {z,,...,2101}. Meanwhile, however,

fle+1)e{l,...,101} = {f(z1),..., f(z101)}

so that f(z + 1) = f(zx) for some zx € {z1,...,z101}. We have
shown that there is an x; such that x + 1 # z; but such that
f(x +1) = f(zx). These x + 1 and z are two different numbers
in N that map under f to the same number, and hence f is not
one-to-one.

Congratulations! You have just learned how mathematicians
count and what mathematicians count. We count elements in sets
via bijections. If the object is not in a set then we cannot count it.
Moreover, you have seen how a mathematician does his work. He
counts on his experiences, he counts on his mathematical instincts,
and he counts on his mathematical inspirations. Do not discount
the wonderful consequences of mathematical inspiration.

With this, we can define what mathematics means by infinity or
by an infinite set.

Definition 3.2.4 A set A is said to be infinite if A is not a finite
set.



3.2. HILBERT'’S INFINITE HOTEL 85

Of course N is an infinite set. Since N C Q, and since N is
infinite then Q is infinite. Since Q C R, R is infinite.

We will attempt to expand your horizons in preparation for a
more mathematical treatment of infinite sets. The thought experi-
ment that we will use is called Hilbert’s Infinite Hotel. Do not try
to think of this Hotel as a hammer and nail construction. It exists
only in the fertile minds of human beings. If you require your math-
ematics to be practical, you are about to get your mind significantly
stretched.

Hilbert owns a unique hotel. It has just one floor but it has
infinitely many rooms in it.

room 1 room 2 room 3 seoe roomn | eee

The three dots e e e indicate that the room numbers continue in
the same manner. Obviously Hilbert's Hotel does not exist in our
universe, but in some other universe of imagined mathematical ob-
jects.

Initially the Hotel is empty. A set {P), P»} of people (people
travel in sets in this universe) visits the Hotel and they want differ-
ent rooms. So Hilbert assigns them rooms as follows.

room 1 room 2 room 3 room 4

oo (3_2)
P Py
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Hilbert observes that infinitely many rooms 3,4, 5, ... are vacant.

Next, a set { Ny, Np, N3, ...} of Naturalists visits the Hotel. They
are in town for a convention protesting the overuse of paradoxes
involving infinity in modern mathematics. They all want private
rooms. Hilbert hits upon the following scheme for assigning them
rooms. Since rooms 1 and 2 are occupied Hilbert looks at picture
(3.2) and assigns rooms as follows.

room 1 room 2 room 3 room 4 room 5

(XX ] (3_3)
P1 P2 N1 N2 N3

Notice that in general the nth Naturalist N, is put up in room n+2
in picture (3.3). In this way everyone has a single room and every
room is occupied.

Next to arrive at Hilbert’s Hotel is a lone stranger L who wants
a private room. Hilbert studies picture (3.3) for a while and comes
up with the following scheme. Every occupant will move down one

room.
room 1 +—— room 2

room 2 +—— room 3
room 3 +—— room 4

The result is summarized by the picture (3.4).

room 1 room 2 room 3 room 4 room 9
oo (3_4)
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In this way everyone has a private room. As he anticipated, Hilbert
sees that room 1 in picture (3.4) is unoccupied. (There is no room
0 to send to room 1.) Thus Hilbert assigns the lone stranger L to
room 1 as in picture (3.5).

room 1 room 2 room 3 room 4 room 95

(XX (3‘5)
Ll Pl Pl Nl N2

Everyone has a single room and every room is occupied as in picture
(3.5). There are no vacancies at Hilbert’s Infinite Hotel.

A troop of 1023 Boy Scouts arrives at the Hotel. After extracting
a promise from them that they will not practice the art of making
fire from two sticks, Hilbert assigns them rooms in his filled Hotel
as follows. First he moves his guests.

room 1 +—— room 1023 +1 = 1024
room 2 +—— room 1023 + 2 = 1025
room 3 +—— room 1023+ 3 = 1026

Draw this picture for yourself, reader. This empties rooms 1 through
1023 so he assigns each of the 1023 Scouts a single room. The Hotel
is filled to capacity once again. I leave it to the reader to draw the
pictures that relate to this assignment of rooms.

The next day everyone checks out. The Hotel is not empty for
long, though, as an infinite set {5}, S,,Ss,...} of college students
arrive for spring break. Hilbert assigns student S, to room n. The
Hotel is filled as in picture (3.6).

room 1 room 2 room 3 room 4 room 5

ee e (3.6)
Sl S2 Sg S4 SS
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Just as Hilbert thinks that the worse of this continual stream
of guests is over, an infinite set of Psychologists {X, X5, X3,...}
arrives at Hilbert’s Hotel. They are here for The Conference on
the Theory of Group Therapy for Infinite Groups being held in the
Hotel’s Infinite Conference Room. Hilbert tells his staff to set up
infinitely many chairs and a podium for the lectures, so now he
has to assign these new guests rooms. Of course, everyone wants
a single room. But the Hotel is filled. How can he do this? He
decides to make room by making every other room vacant. Try to
figure this one out yourself before reading on.

Here’s how he does it. The student S, in room 7 is sent to room
2n as follows.

S =— room 2
Sy +—— room 4
S3 +—— room 6

S, +—— room 2n

The room assignments in the Hotel look like picture (3.7).

room 1 room 2 room 3 room 4 room 5

[ XX 3.7
s s (3.7)

Each of the odd numbered rooms is empty so Hilbert assigns the
Psychologists rooms as follows.

X, +—— the first odd numbered room 1
X5 +—— the second odd numbered room 3
X3 +—— the third odd numbered room &

X, +—— the nth odd numbered room 2n —1
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This gives each student a single room and each odd numbered room
is occupied as in the following picture.

room 1

room 2

S

room 3

room 4

room 9 (3.8)

In general, we are assigning rooms as follows. The rooms 2n — 1
and 2n receive people X, and S, as follows.

room 2n-1

Xn

room 2n

Sn

Notice that the even numbered room 2n is occupied by student
S, who had occupied room n. The odd numbered room 2n — 1
is occupied by Psychologist X,. Thus each room is occupied by
exactly one person. The Hotel is filled once again.

Here are a few exercises on Hilbert’s Infinite Hotel.

1. Suppose that the Hotel is filled with infinitely many students S, Ss,

83,00

Two infinite groups {Y1,Y2,Ys,...} and {Z;, Z2, Zs,...} show

up looking for rooms for the night. Show how to accommodate these
new guests with single rooms.

2. The Hotel is empty when a group {U;,Us,Us,...,U,z2,...} shows up.
Assign them rooms so that the Hotel is filled.

There is an interesting thing going on in these room assignments.
Hilbert assigns rooms so that when he is done his Hotel is filled to
capacity. That is right. He fills the hotel so that each person has a
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room and each room is filled. So far he has been able to do that for
any group that arrives, but shortly we will see that there is a large
collection of Realists that cannot be housed in Hilbert’s Hotel. I
will not give details, only the punch line. Hilbert has filled his
Hotel with everyone who has arrived so far, but he will be unable
to accommodate all of the Realists.

The next day all the guests at Hilbert’s Infinite Hotel check
out. Suddenly, infinitely many groups of Rationalists show up and
require single rooms.

Ll = {A117A12,A137"'}
L2 {A217A227A23""}
Ls = {A31’A32>A33,---}

1l

Notice that

Anm

is Rationalist m in implied list L,. Thus A5 is Rationalist 2 in
the implied list L;, A47 is Rationalist 7 in the implied list L7, and
Al01g00gor is Rationalist number googol in the implied list Lyo;. We
will demonstrate how to accommodate these guests so that each
room is occupied and each Rationalist has a single room.

Write the names in each implied list L, as row n in the infinite
rectangular array (3.9).

All A12 A13 A14 e
A?.l A22 A23 A24 oo
Azl Asy Asg Az

A4l A42 A43 A44 cee
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Draw parallel arrows starting at the elements Ag; and ending at
the elements A;x as in array (3.10).

(3.10)

These arrows can be used to define a bijection
f N— A

as follows. These arrows define a means of reading the array and
assigning rooms to the Rationalists. Hold the page at an angle if you
must, but start reading the array along the arrows as though there
were words to be read. The first thing you read is A;;. The next
two things you read are A and Ajs. The next things you would
read would be As;, Agg, A1s. The process continues indefinitely. In
the more precise language of functions we write

f(0) = An

f(1)=An f(2)=An

f(3) = Az f(4) = Ay f(5) = Az

f(6) = Ag f(7) = Az f(8) = A f(9) = Ay

Trace these values for f through the first five arrows in the above ar-
ray. We will show you that this rule f is the promised bijection. Try
to plow through this argument. However, if you feel overwhelmed
then try to understand that in drawing these arrows we have inter-
sected each of the entries of the array in such a way that each arrow
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intersects finitely many entries in the array and each entry is met
by some arrow.

We take it as clear that f is one-to-one. Let A,,, € L,. By the
above scheme we see that the subscripts lying along the first arrow
add up to 1+1 = 2, the subscripts lying along the second arrow add
up to 3, the subscripts lying along arrow #3 add up to 4, and in
general the subscripts lying along arrow #k add up to £ + 1. Thus
Anm lies along arrow #n +m — 1. Now consider the number that
we will assign A, with f.

On arrow #1 there is 1 entry. On arrow #2 there are 2 entries,
and in general on arrow #n there are n entries. Thus, when we have
finished counting the entries from A;, to A;,, we will have counted
a total of

from arrow #1 #2 #e
1 + 2 + ...+ { =

1
£+1) in a little bit. For

now just accept it knowing that there is the promise of a proof.
Meanwhile back at the argument, we see that A, is on arrow
#n +m — 1 so that

entries. We will see why this sum is

(n+m—1)(n+m)

there is some k < 5

such that f(k) = Apm.-

This proves that f(k) = Ann for some number k, and this in turn
proves that f is onto. Since we have already stated that f is one-
to-one, f : N — A is a bijection. We would then send Rationalist
Anm to room k. The assignment of rooms is complete.

Let us take a break at this time and examine the sum 1 + 2 +
...+ £. A German school teacher was feeling a bit hungry so he
prepared to go out for coffee and a danish. To keep his pupils busy
he instructed them to add up the numbers from 1 to 100. We will
do this problem for an arbitray positive integer £. A child, Carl F.
Gauss, decided that there must be a faster way. In a flash of genius
the 11 year old Gauss discovered the following identity. Let us call
the sum S.

S=1+2+...+¢
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Find the sum in two different ways. Start at 1 and end at ¢, and in
the other start at £ and end at 1.

S =1 + 2 + ...+ £-1 + ¢
S = ¢ + -1 + ... + 2 + 1
Notice that in each column we have a sum
£+1.
Add these two sums together to find that
S = 1 + 2 + ... + f£-1 +
+S5 = { + -1 + ... + 2 + 1
25 = ((+1) + (£+1) + ... + ({+1) + (£+1)

There are ¢ terms £ + 1 so we have 25 = {(£ + 1) or equivalently

06 +1)

S=14+2+...+¢= 5

Quite a pretty little argument for a child, eh? Before the school
teacher could button his coat, Gauss turned his slate over and folded
his hands. The teacher, thinking something was amiss, examined
the slate and saw the correct sum written there, History does not
record whether or not the school teacher got his coffee that day or
if he suffered for a lack of it.

The purpose behind the above stories is to develop an intuition
for the infinite. The story about Hilbert’s Infinite Hotel shows us
that in an infinite set there is always plenty of room. It would seem
that we can make room for any number of guests. Or can we?

The conventions and conferences are over so that the Hotel is
empty. Hilbert breathes a sigh of relief and counts his revenue.
Accommodating all of those guests has taxed him. There is a knock
at the door and Hilbert sees that an infinite collection of Realists

{R:|teRand0<z <1}

is in town for a conference on complex issues. Hilbert sets out
to assign each of them a private room, but his first attempt at
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assigning rooms leaves infinitely many Realists without a room. He
tries again and still he cannot assign every Realist a single room.
For some reason he does not yet fathom, no matter how he assigns
rooms to the Realists, some Realists do not get a single room. The
mathematics behind this conundrum is a jolt to our common sense
and will have to wait until Theorem 4.3.1. The problem of assigning
rooms to Realists shows us that our intuition about finite sets is
useless when we consider matters about infinite sets. We will have
to develop entirely new insights if we are to understand the infinite.
Hilbert does not yet have the mathematical experience to address
this problem. He sends most of these potential guests packing.

Let us discover what Hilbert did not fathom. Let us see why
there is no way to accommodate these realists with single rooms in
the Infinite Hotel.

Suppose, for the sake of contradiction, that we can make an
implied list of these guests and their single rooms. That is, we
assign Realists to single rooms and then we make an implied list of
the rooms n and the associated occupants R, .

room  occupant decimal

1 Rx1 T = - di2 dis dig
2 R, Ty = dn doz  dayg
3 Rﬂ’:g I3 = .d31 d32 d34
4 R

4 Ts= dg  deo  dg

We have also given the decimal expansion of z,. In this implied
list, each d;; is a digit, a number in the set {0,1,...,9}, and we
choose the shortest decimal expansion for z,,. That is, if the decimal
expansion for z,, ends with 999 then we replace it with the number
that ends in 0’s. For instance, the following numbers are equal.

1.000 = .999
1000 = .0999
1230 = .122999.

In these cases we choose the shorter finite decimal expansion, ezxcept
for 1. The number 1 is written as a decimal .999.
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Furthermore, d;, represents the first digit in the decimal form of
x,, das represents digit number 3 in the decimal form of z,, and in
general dn, represents digit number m in the decimal form of z,.
We can now produce a Realist R, who does not get a room.

Let us define a digit d, as follows.

di — dip+1 1fd117é9
b 0 ifdy=9 "

Notice that we have defined d; so that d; # d;;. For example, if
dll = 5 then dl =6 and if dll = 9 then dl = 0.
We do the same thing for dos. Let

&y = dog +1 if dgg #9
2= 0 ifdyp=9"

Notice that we have defined dy so that dy # dyo. For example, if
dyy = 0 then dy =1 and if dyy = 7 then dy = 8.
In general, let us define

" 0 ifdy, =9 °

Then d, # dun.
The roomless Realist R, is given by writing down the decimal
expansion

Tr = .d1d2d3d4 e

If z ends in 999 then we replace it with the shorter decimal repre-
sentation that ends in 000. Then z # z, because by our choice of
dy, z and x; differ in the first decimal place, d; # dy;. Also, x # x3
because by our choice of dy, x and x4 differ in decimal place number
2, do # doz. In general, z # z, because by our choice of d,, x and
x, differ in decimal place number n, d, # dn,. Thus R, is not on
the implied list of Realists who got a room. This is the person we
have sought. This is why Hilbert could not give each Realist a single
room. There are simply too many Realists! No matter what rooms
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he assigned there would always be a Realist B, who does not get a
room. There are more Realists than there are rooms.

How can that be, reader? There are infinitely many rooms and
infinitely many Realists. How can there be more Realists than
rooms? Read on.

Let’s examine the above choices for d, and the construction of
z on a concrete example. Suppose that we are given specific real

numbers ), To, Z3, ... that form the following implied list.
= [1] 2 3 4 5
T, = 0 ]9 0 1 0
3 = .1 4 [9 5 7
T, = 4 1 4 4
s = 0 1 0 1

Then
r = .2 00 3 4

The first decimal of z is 2 because the first decimal of z; is 1.

The second decimal of x is 0 because the second decimal of 4 is 9.

The second decimal of z is 0 because the third decimal of z3 is 9.

The fourth decimal of  is 3 because the fourth decimal of x4 is 2.

The fifth decimal of z is 4 because the fifth decimal of x5 is 3.
The comparisons of £ to the numbers on our implied list are

obvious.

x # x) because they differ in decimal place 1,

T # T because they differ in decimal place 2,

x # x3 because they differ in decimal place 3.

These comparisons continue indefinitely. In this way we show that

x is not on the implied list x,, x9, z3, .. ..

There is a person at the Hotel who haunts the Lobby. Each day
he tries to walk a 2 meter long straight line across the Lobby floor.
He starts at one end of the line and wants to get to the other end,
but he has a peculiar way of walking. His next step is always half
the length of his previous step. He starts with a step of one meter.
One meter remains to be crossed.
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0 midpoint 2
| | l

r i L

1
He follows this with a 3 meter step. Half a meter remains.

0 1 1 midpoint 2
L ! 2 | |
i H 1 1
1 1 1 .
Then he steps off a Yoy meter step. A 1 meter remains.
0 1 % 2
: | S .
midpoint

1
Continuing on, on his nth step he moves on meters, and that

1
leaves on meters left to be covered. The scale is magnified.

1 midpoint 2
[ X N | —
2" l I

T 1 T

He continues on indefinitely. Upon completion there are 0 meters
left to cover and so he has crossed

d=ltitiiyiy
- 2 4 LR 2n . .o

meters. He has walked the entire 2 meter length.
Each of the rooms at Hilbert’s Infinite Hotel has to be cleaned

and there is one and only one cleaning lady to do the job. Her
name is Mary. (Hilbert's mother needed a job.) Her routine is to
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clean the rooms in order. She begins in the morning with room 1,
followed by room 2, and then room 3, and on inductively. She is an
industrious woman who picks up momentum as her day progresses

so she cleans the first room in 1 hour, the second room in 3 hour,

1 1
the next in 2 hour, and so on, cleaning room n in on hours. When

she has cleaned each room she is done. Thus she works

UL S
2 4 DEE Y 2n s e T

hours a day. She certainly has a good job. She only has a 2 hour
work day. But something else is wrong here. Where is she at the
end of her day? There is no last room for her to clean because the
Hotel has infinitely many rooms. However, we can be assured that
each of the rooms is spotless. We will learn the fate of the cleaning
lady when we finish our discussion of ordinals on page 184.

3.3 Equivalent Sets and Cardinality
In this section we will define the equivalence of cardinalities.

Definition 3.3.1 Sets A and B are said to be equivalent if there
is a bijection f : A — B.

Theorem 3.3.2 A and B are equivalent exactly when card(A) =
card(B).

If we look at the different steps in Hilbert’s Infinite Hotel we
see that in making space for the lone stranger Hilbert used the fact
that the function

f:{1,23,...} —{2,3,4,...}
defined by

f(m)=n+1
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defines a bijection. Thus {1,2,3,...} is equivalent to the proper
subset {2,3,4,...}.

In moving the students {S;,S2,Ss,...} into new rooms to ac-
commodate all of the Psychologists { X}, X, X3, ...}, we are making
use of the bijection

F:{1,2,3,..} —— {2,4,6,...}

given by
f(n) = 2n.

Thus {1,2,3,...} is equivalent to the proper subset {2,4,6,...}.

One of the exercises asks you to show a result due to Galileo
Galilei. Galileo observed that there are no more and no fewer perfect
squares than there are natural numbers. In our language Galileo was
observing that there is a bijection

Fi{1,2,3,..} —— {1,4,9,...}

given by
f(n) =n?.

Thus {1,2,3,...} is equivalent to its proper subset {1,4,9,...} of
perfect squares. This property turns out to be a characteristic of
infinite sets that can be used to define infinite sets without referring
to finite sets.

Theorem 3.3.3 The set A is infinite exactly when A is equivalent
to a proper subset of itself.

For example, by the functions f that we discussed above, N is
an infinite set.

Example 3.3.4 Let us show that Z is equivalent to N. This may

seem strange. N is unbounded to the right while Z is unbounded in

both directions. A bijection between them exists nonetheless.
Define a rule f : Z — N by writing

2z ifz>0
f(z)‘{ —1-2z ifz<0
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for all z € Z. (“Now where did that come from?” you ask. “From
a great deal of preparation,” I respond.) Let us get a feel for the
rule given here. For z > 0 we have

f0)=0,7(1) =2,f(2) = 4,

and in general for n € N the nth positive number n is sent to the
nth even number:

f(n) = 2n.

The negative z are a different matter.

=1 = —1-2(-1)
=2 = -1-2(-2)
f(=3) = —1-2(-3)

1
3
)

and in general for n € N the nth negative number —n is sent to the
nth odd number:
f(—=n)=2n-1.

We casually observe that f is onto since a natural number is either
even or odd. Furthermore, f is one-to-one. This will require us to
look at a few cases. Let z # 2z’ € Z.

1. If z # 2 > 0 then f(2) =2z # 22’ = f(2)).
2. If z# 2 <0 then f(z) = —1—2z # -1 — 22/ = f(2).

3. In the last case, we can assume without loss of generality that
z < 0 < Z/. Then f(z) is odd and f(2’) is even so that

f(2) # f(2).

In any case, f(z) # f(Z') so that f is one-to-one. Hence f is a
bijection and consequently Z is equivalent to N. Subsequently, since
Z is equivalent to its proper subset N, Z is infinite.

Example 3.3.5 We will show that R is equivalent to the proper
subset R* of positive real numbers, thus proving that R is infi-
nite. This may seem obvious, but remember that every statement
in mathematics must be accompanied by a justification or proof.
Besides, the exercise prepares us for more complex arguments later.
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The bijection f:R — R* is given by
f(x) =2~

The argument requires a little high school algebra involving the
logarithm log,(z). All you have to know about log,(z) is that

logy(2%) = z = 2°al),

To see that f is one-to-one, suppose that f(z) = f(z). Then

I

2 = 2%,
Apply log, to each side of this equation to find that

log,y(2%) = 10g2(2z,),

so that z = 2/. Thus f: R — R™ is one-to-one.
To see that f is onto let y € R*. Then z = log,(y) is a number
such that
: flz)=2"= Qloga(v) — Y.

Thus f : R — R* is onto, hence f is a bijection, whence R is
equivalent to R™.

Example 3.3.6 We will show in Theorem 4.3.1 that the function

T T

tan(6) : (—5, 5) R

is a bijection. Then R is equivalent to its proper subset (—g, %),
hence R is infinite, and therefore (—g—, %) is infinite. The alge-
braically educated reader should try this as an exercise.

We present two classic examples due to G. Cantor, which will
demonstrate that our intuition about infinity is inaccurate. These
examples will present ideas that are contrary to what we learned as
children, if indeed we learned anything about infinity as children.
We begin with an alternative approach to cardinality.
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Let A be an infinite set. The cardinality of A can be defined as
follows.

card(A) = the sets B that are equivalent to A.

In this case we call card(A) a cardinal number or a cardinal Thus
z is a cardinal exactly when there is a set A such that z = card(A).
Although this appears to be different from the original definition of
cardinal number, it defines the same thing.

For example, card(®) is the collection of sets that have no ele-
ments. Naturally @ is the only such set, so we will use the symbol 0
to denote card(®).

0 = card(®).

Since any bijection
fi{e} — X

is onto, we can write
X ={f()}

or equivalently
X = {z} for some element z.

Thus it is natural to use the symbol 1 to denote card{e}.

1 = card{e}.

A tradition started by Georg Cantor [1] is to use the first Hebrew
letter R to denote small infinite cardinals. Thus we let

Ro = card(N).




Chapter 4

Infinite Cardinals

As we defined in the previous chapter the cardinality of a set A,
card(A), is the class of all sets B that are equivalent to A. For
a finite set A = {1,...,n}, card(A) is the collection of sets that
contain exactly n elements. Thus card(A) is a good way to describe
the size of A, even when A is infinite. We might naively say that
if A and B are infinite sets then card(A) = card(B). However, we
showed in Chapter 3 that Hilbert’s Infinite Hotel, whose rooms are
numbered 1, 2,3, ... cannot fit the Realists whose group is indexed
by real numbers (0,1) = {z € R|0 < z < 1}. In another light, there
is no bijection from the set (0, 1) onto the set of natural numbers N.
If such a bijection does not exist then we must conclude intuitively
and accurately that

card(N) and card(0, 1) are different cardinalities.

This should come as a shock to your common sense. Both cardinals
are infinite so how can they be different values? The inequality
card(N) # card( (0,1) ) is true enough, so we have learned that
our common sense is wrong when we deal with infinity. This is an
important point. We do not have any common sense when it comes
to infinite sets. We have to develop a new sense for size by relying
on the mathematical properties of infinite sets. Once this is done,
we can find some new intuitive feelings about infinity.

We will find in this chapter that there are two kinds of infinite
sets: the countable ones and the uncountable ones. Any set equiv-

103
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alent to N is said to be countable (hence the name countable) so
we say that card(N) is a countable cardinal. If S is an infinite set
and if card(N) # card(S) then S is said to be uncountable. We will
show that card(N) # card( (0,1) ) so the set (0,1) is uncountable.
Other uncountable sets include P(N) and card ({0, 1}V) so there are
several uncountable sets. We end this chapter with the amazing
fact that there is an infinite chain of infinite cardinals. We might
colloquially rephrase this by saying that there are infinitely many
infinites.

4.1 Countable Sets

A set A is said to be countable if A is finite or if card(A) = card(N).
Equivalently, A is countable if A is equivalent to some subset of N,
Countable sets are appropriately named since these are the sets A
that we can list as the possibly finite sets:

A ={a),aq,as,...}.

Thus we can use subsets of N to list the elements of A. The sets
0, {1,2,3}, and {2,4,6,...} are countable. There are plenty of
countable sets and we will give several examples of them in this
section.

Let

Qt = {%[n,m>0andn,m€Z}

be the set of positive rational numbers. It is a fact (not proved here)
that between any two positive real numbers z < y there is a positive
rational number ¢. If you pick two different real numbers z’ < ¥/,
then there is another rational number ¢’ between them. Let’s draw
that picture.

/ ql yl
| |
T T

1 =
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Thus between 0 and % there is a positive rational number. You
can check that one such number is % Compare this to the fact
that the distance between two different natural numbers is at least
1. We say that Q% is a dense subset of RT while N is a discrete
subset of R*. Another way to think of this property of Q" is that
each real number can be approximated by a rational number to any
degree of accuracy. We are familiar with the notion of the density
of the rationals since each calculator readout demonstrates that
each real number z can be approximated by a number with a finite
decimal expansion. Finite decimal numbers are rational numbers.
For example, the readout on your calculator for v/2 is not completely
accurate even though it may give 64 decimal places of v/2. The
calculator value for v/2 is accurate only to those few decimal places.
The reason for this is that the number 1/2 is neither a finite decimal
nor a repeating decimal. An infinite number of decimal places is
necessary to write down v/2 with complete accuracy, but we can
approximate v/2 with rational numbers.

We might be led to believe that N and Q* are not equivalent
since N is more thinly distributed in R* than is Q*. That is, we
might suspect that card(N) # card(Q*). However, the next the-
orem, due to Georg Cantor, shows us that Q% is a countable set.
Thus the distribution or density of numbers on the real line does
not necessarily reflect cardinality.

Theorem 4.1.1 Q7 is a countable set.

Proof: We must produce a bijection f : N — Q%. Begin by
enumerating Q* as the infinite rectangular array (4.1).

- el B2 H N I
N N oo N =
Wik Wl Wit wl =
LI NN U SN I R e
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Notice that the numbers in Row 1 have numerator 1, the numbers
in Row 2 have numerator 2, and in general the numbers in Row
n have numerator n. Similarly, the denominator of the fractions
in Column 1 is 1, the denominator of the fractions in Column 2 is
2, and in general the fractions in Column m have denominator m.

Since each number in Q7 is a fraction 2, the array (4.1) contains
m

all of the numbers in Q*. (Which Row and Column contain that

last fraction?)

Delete from this array any fractions that are not in reduced form.
For example, we will delete the fractions

34 9 212

3727277424
as well as any other fraction that can be reduced. The remaining
fractions cannot be reduced. Some of those fractions include

1119 101
1727277 83"

A portion of the resulting array is

1 1 1 1

1 2 3 4

2 2

1 3 (4.2)
3 3 3

1 2 1

4 4

1 3

At this point we introduce arrows into array (4.2). The arrow #1

1 1
passes through 1 only. The arrow #2 starts at 1 and extends to 5

In general, arrow #n starts at % on the left edge of the array and

1 .
extends to — at the top edge of the array. The array (4.3) will help
n
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you envision this process.

These arrows give us a means of writing down a bijection f : N —»
Q™ as follows. We will define f by reading the fractions as they
appear along the arrows.

LET:f@%:%
=2 =3
ORENSIORES
[O)=5, JO =3 fM=5 [&)=7

Before reading on, try to use arrows #5 and #6 to fill in the next
two rows of this rule.

You can peek now. The next three arrows will produce the
values

19="2 s00)=g,
jan=3, f2 =3 f0=3, f09=3, s05=2, s06)=1,
jan=1, j08)=2, j09)=3, 520)=;
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for the function f. Now that we have some intuition about the rule
f, our next task is to show that f is a bijection.

To see that f is onto let — be on the array. Then — is in Row
m m

n . .
n and Column m and the number T begins the nth arrow in our

array as in the picture (4.4).

VST E

#n #n+1 #n+2 #n+m—1

By shifting to the right one place, we shift to the next arrow. It
. n .
is clear from the diagram that — is on arrow #n + m. How many
m

numbers have we counted when we finish arrow #n +m? On arrow
#1 we counted 1 number, on arrow #2 we counted 2 more, and in
general on arrow #¢ we counted at most ¢ fractions. Thus when
we have finished counting along arrow #n + m we have counted at
most a total of

(n+m—1)(n+m)
2

1+424+...+(n+m-1) =

fractions. You may remember this sum as the identity found by an
eighteenth century elementary school student Carl F. Gauss. See
page 92. Since sometime before we reach the end of arrow #n+m—1

n
we will reach —, there will be some number
m

(n+m-1)(n+m)

k <

such that

For example, before we reach the end of arrow #7, we will count at
most
7(7+1)

=2
5 8

1+24...4+7=
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3
fractions. Thus there is some number k& < 28 such that f(k) = 5

The reader will find k& by reading Row 7 of the above LIST that
3
defines f that k = 19. That is, f(19) = 5 Thus f is onto.

It is clear that different natural numbers k and &’ are sent to
different fractions f(k) and f(k’) on the LIST, so f is one-to-one.
Hence f is a bijection, and as required to complete our task, N is
equivalent to Q.

The inclusions
{2,4,6,...} cNC Q"
can be used to intuitively deduce that
card({2,4,6,...}) < card(N) < card(Q™").

But the compelling work that we have done to date allows us to
deduce the stronger thought

card({2,4,6,...}) = card(N) = card(Q).

Some might try to say that because N and Q% are infinite they
must be equivalent. This represents old common sense so it has to
be rejected as an argument. Cardinalities are equal only when we
can produce a bijection between two of their elements. (Remember
that card(A) is the set of all sets B that are equivalent to A.) Some
of our subsequent work will show why that kind of reasoning is not
a part of mathematics.

The next result shows us that the countable union of countable
sets is countable. That is, we will start with a family of sets

AI)A2aA3a'- .

such that each Ay is itself a countable set. Thus we can take set A;
and list it as

Al = {011,012,013, .o -},
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where a5 represents element 2 in set A;, and where @, ; is the 11th
element in set A;. We will also list A, as

Ay = {021,022,023, .o }

Notice that the first subscript gives the set A, that the element is
in, and the second subscript gives the place that the element takes
in the implied list A;. Thus a5 is element 15 in the set A,. In
general, we will list A, as

An = {anh an2, Qn3dy . » }

For instance, in the implied list A;9;, the 200th element on the
implied list is a@j21.200. The next result shows that if we have a
countable implied list A;, A, As,... of countable sets, then when
we put them together using the union operation we will have a
countable set.

Theorem 4.1.2 Let A, Ay, As,... be an implied list of countable
sets. Then | J,cn An Is a countable set.

Proof: We have used this argument several times before.

Since each set A,, is a countable set we can make an implied list
of their elements as we did in the discussion preceding this theorem.

Al = {011,012,013,014, .- -},
Ay = {a21, a2, a3, 004, ..},
A = {031,032,033,034, .o -},

3

A4 = {041,042,043,044,---

To make the notation easier, let A = | J, ¢y An and list the elements
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of A as in array (4.5).

an a2 a3 Q14

a1 Q22 Q23 Q24

(4.5)

az) a3z2 az3 Q34

g1 Q42 Q43 Q44

We are going to use arrows to count the elements in the array (4.5).
Your instincts might say that we should count left to right, the
way we read. But that approach leads us to exhaust the counting
numbers N before we have left the first row. No, the best way is to
use these diagonal arrows because each of them is finite and each
a;; lies on some arrow. Thus we are assured that each element will
be counted.

Draw parallel line segments starting at the elements ay; and
ending at the elements a); as in the array (4.6).

P

#1
#2
#3
#4
#5

Use these arrows to define a bijection

FiN—— A
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whose images f(n) satisfy the following rule:

f(0) = an,

f(1)=a2, [f(2)=ay.,

J(3)=uaa, [f(4) =an, f(5)=as,
f(6) 7

=aq, [(7)=as, f(8)=axu, [(9)=ay,

It is clear that f is one-to-one. Let am, € A. By the above scheme
we see that the subscripts lying along arrow #1 add upto1+1 = 2,
the subscripts lying along arrow #2 add up to 3, the subscripts
lying along arrow #3 add up to 4, and in general the subscripts
lying along arrow #¢ add up to ¢ + 1. Thus a,, lies along arrow
#m + n — 1, which proves that f(k) = am, for some number k.
In fact, using the argument used to prove Theorem 4.1.1, we could
show that

(n+m-—1)(n+m)

E<14+24...+(n+m—-1)= 5

Try to do that, reader. This proves that f is onto and hence that
f: N — A is a bijection. Consequently, A is equivalent to N and
therefore A is a countable set. This completes the proof.

The next result shows that if we increase N by finitely many
elements then we have not increased the cardinalty of N.

Theorem 4.1.3 Let n € N and suppose that {ai,...,a,} is a set.
Then card(N U {ay,...,an}) is countable.

Proof: The sets Nand {ay, ..., a,} are countable, so by Theorem
4.1.2 their union NU {ay,...,a,} is also countable. This completes
the proof.

Theorem 4.1.2 can be used to give a quick proof that card(N) =
card(Q).

Theorem 4.1.4 Q is countable.

Proof: Observe that Q = Q* U {0} UQ~, where Q™ is the set of
negative rational numbers. We will prove that Q™ is countable.
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Define a function f: Q* — Q™ as

That is, the function f(z) sends a rational number z to its additive
inverse —z. Thus f(1) = —1 and f(9) = —9. The function itself
is not complex but we will find it to be very useful. We will show
that this f is a bijection.

To see that f is one-to-one let x # z’ be different numbers in
Q*. It is then clear that —x = —z’ so that f(z) # f(z). Hence
different fractions = and z’ map to different fractions f(z) and f(z'),
whence f is one-to-one.

Prove that f is onto as follows. Let y € Q~ be a negative
fraction. Then z = —y is a positive fraction, now isn’t it? By
forming —y you are simply removing the negative sign from y. Try

1
it with -3 and ~3 Then z € Q* and

fl@)=-z=~(-y) =y

Hence f is an onto function.

As we claimed at the onset, f : Qt — Q7 is a bijection.

By Theorem 4.1.1, Q% is countable, so Q~ is countable. . Thus
Qt, {0}, and Q™ are countable sets, and hence Q is a union of three
countable sets. Theorem 4.1.2 then implies that Q is countable.
This completes the proof.

Summarizing the above proof we showed that Q* and Q™ have
the same cardinality because there is a bijection f : Qt — Q.
The bijection f is defined by f(z) = —z for each z € Q*. That is
there is a way to count off the elements of Q* and Q~ so that when
we are done with the elements of Q* we are also done with the
elements of Q™. One element of Qt corresponds to one element of
Q™ and one element of Q~ corresponds to one and only one element
of Q*. This is what makes a bijection. This is why card(Q*) =
card(Q7).

The next result shows us how to use Theorem 4.1.2 to show that
a set is countable. Consider the set of pairs NxN = {(n,m) |n,m €
N}. Since N € R we can graph N x N as points in the plane R? as
in figure (4.7).



114

CHAPTER 4. INFINITE CARDINALS

The pairs (2,4) and (3,2) label a couple of randomly selected
points. This pleasant geometric object of evenly spaced points in
the plane is called a lattice. The lattice extends indefinitely in all
directions. Given the theme of this chapter it is natural to ask for
the cardinality of the lattice.

(2,4)
4 —QL [ ° [ [
3 —e . ] . ]
(3,2) (4.7)
2 —o ] . [ [
1] —e [ [ [ [
(4,0)
1 I I !
1 2 3 4

Theorem 4.1.5 N x N is g countable set.

Proof: Arrange N x N as an infinite rectangular array (4.8).

(0,0)
(1,0)
(2,0)

(3,0)

(0,1)
(1,1)
(2,1)

(3,1)

(0,2)
(1,2)
(2,2)

(3:2)

(0,3)
(1,3)
(2,3) ... (4.8)

(3,3)
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We will avoid the arrows used in Theorems 4.1.1 and 4.1.2. The
rows of the array (4.8) are actually countable sets Ag, Ay, As, .. .,
and there are countably many of them.

Ao= {(0,0), (0,1), (0,2), (0,3), ...}
A= {(1,0), (1L1), (1,2, (1,3), ...} W)
Ar= {(2,0), (21), (22), (2,3), ...}

A= {(3,0), (31), (3,2, (3,3), ...}

. 199

In general,
A, ={(n,0),(n,1),(n,2),(n,3),...}

so that (n,m) is the mth element on the implied list A,. This holds
for each n,m € N so that

NXN:AQUAIUA2U

Hence N x N is a countable union of countable sets, whence N x N
is countable by Theorem 4.1.2. This completes the proof.

The next result shows us that we can increase the dimension of
a set and still preserve its countability.

Theorem 4.1.6 Let A and B be countable sets. Then A x B is a
countable set.

Proof: Since A and B are countable we can list them. Let

A = {aaas,...},
B = {bl,b2,b3,...}.
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Then we can list the elements of A x B as an infinite array or implied
list (4.10).

(a1,b1) (a1,02) (a1,b3) (a1,bs) ...
(a2,b1) (a2,b2) (a2,b3) (a2,b4)

(4.10)
(as,bl) (a3,b2) (a3,b3) (a3,b4)

(ag,b1) (as,b2) (aq,b3) (as,bs)

Name the rows of array (4.10) with symbols X;, X5, ... as in
array (4.11).

X1= (al,bl) (al,b2) (al,bs) (al,b4)...

X2 = (a2, bl) (a2, b2) (a2, bg) (a2, b4) [N
(4.11)
X3 = (ag, bl) (a3, b2) (a3, bg) (a3, b4) e

X4 = (a4,b1) (a4,b2) (a4,b3) (a4,b4) e

Each X is a countable set and there are countably many of
them, so by Theorem 4.1.2, the union

AXB=X1UX2UX3U...

is a countable set.

Since Q is countable we have proved the following theorem.
Theorem 4.1.7 Q x Q is a countable set.

Using the same kind of argument the reader should try to prove
the next result.

Theorem 4.1.8 Nx Nx N = {(n,m, #)|n,m, £ € N} is countable.
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4.2 Uncountable Sets

The next stage of our work requires us to compare the size of car-
dinals.

Definition 4.2.1 Let A and B be sets. We write
card(A) < card(B)
if there is a one-to-one function f : A — B.

This is quite a reasonable definition of inequality for cardinals.
For example, 3 < 4 because {1,2,3} C {1,2, 3,4}, and in general

m < n exactly when {1,...,m} C {1,...,n}.

For larger sets we see that
card(N) < card(Z) < card(Q) < card(R)

because N € Z € Q C R. One property that real numbers share
with cardinals is the following property of natural numbers.

If n <m and m <n then n = m.

What this says is that we can deduce the equality of numbers if we
can show that they are mutually related by <. It is a remarkable
fact that this property also holds holds for infinite cardinals. Its
proof is too far afield for us to write here. We will just accept its
truth in this book.

If card(A) < card(B) and card(B) < card(A)
then card(A) = card(B).

What we need now are some good examples. The set A is said
to be uncountable if card(N) # card(A). The question is, are there
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any uncountable sets at all, or is every set countable? We will show
the remarkable fact that there are indeed uncountable sets. This
must seem strange if you think about it for a second. Why should
there be two types of infinite set? And yet that is where we are
headed.

Let (0, 1) denote the set of real numbers properly between 0 and

0,1) = {reR|0<z<1}.

The next series of results provides us with a collection of uncount-
able sets by showing that many of the geometric objects you are
familiar with are themselves uncountable. For example, every line
segment is uncountable., Thus the cardinality of a set is indepen-
dent of its length. The first result shows us that all line segments
of finite length have the same cardinality.

X
(4.12)

Theorem 4.2.2 If X; and X, are finite line segments then
card(X;) = card(X;). Equivalently, any two line segments are
equivalent.

Proof: Begin with two line segements as in picture (4.12). The
segments X; and X3 in picture (4.12) are representative of all seg-
ments. We will use only their most general properties in this dis-
cussion. In picture (4.13) the end points of these segments are
contained in lines L and L’. Lines L and L’ intersect at a point P.
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We define a function f : X; — X, as follows. Given any
point £ € X, draw a line (the dotted one in picture (4.13)) from
P through z such that it intersects the segment X, at the point y.
We define

f(@)=y.

To see that f is onto, refer to picture (4.13). Let y € X2 be a
point. Extend a dotted line from P to y. This line intersects X, at
some point z. Then by the definition of f, f(z) = y, and hence f
is onto.

To see that f is one-to-one suppose that  # x’. Then as in
picture (4.14), z and 2’ determine different (dotted) lines through
P. Let y and 3’ be the points where the dotted lines intersect Xj.
The intersections of these dotted lines with X, are different points y
and y'. (If otherwise, the intersection is one point y, then y and the
point P yield exactly one dotted line, not two.) Then f(z) # f(z'),
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which implies that f is one-to-one.

Thus f is a bijection and therefore X is equivalent to X,. This
ends the proof.

A colloquial way of stating the above result is that any two line
segments have the same number of elements. However, our later
work will show that to say “the same number of elements” is a
terribly inadequate way to describe the cardinality of a set.

For instance,

card(0, 1) = card (0, googolplex) = card (—2,—1) = card (—%, %) .

Consequently,

card(0, 1) = card(a, b) for any numbers a < b.

That is, any two segements have the same cardinality, namely, that
of (0,1).
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The next example shows that all segments have the cardinality
of R.

Theorem 4.2.3 card(0,1) = card(R).

Proof: By the comment preceding this theorem

card(0,1) = card (—-g, g)

. ) T
so, without losing generality, we can prove that card (—5, 5) =

card(R).
Consider the function
tan(d) : (—%, %) —— R.

Given a real number y draw a right triangle labelled as in the dia~
gram below.

Elementary trigonometry shows that

tan(f) = 1=V
Thus tan(6) is onto.
To see that tan(f) is one-to-one, suppose that 6 and §’ are given
such that
tan(g) = tan(6’).
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Draw two triangles:

tan(d) tan(g’)

6 [] 6’ ]

Certainly the bases of these triangles are equal as are the indicated
right angles. By hypothesis the right hand legs are equal in length.
Then by a theorem you learned in high school geometry the two
triangles are congruent. Thus the measures 6 and ' of the corre-
sponding base angles are equal:

6=4¢,
so that tan(f) is one-to-one.
Then tan(f) : (—g, %) — R is a bijection and therefore

card (—g, g) = card(R).

This completes the proof of the theorem.

That may come as a surprise to you. The cardinality of a finite
segment and the cardinality of the unbounded real number line are
the same. This implies that greater length does not produce more
points in a line. In simple but inaccurate terms, the number of
points on a finite segment is equal to the number of points in all of
the real number line.

Let

I = {zeR|0<z <1}
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This is the set whose elements are 0 and 1 and all of the numbers
between 0 and 1. Let S be the unit square and its interior, and let
C be the unit cube and its interior. In pictures we have

Let us be clear about which figures we mean. [ includes the end
points and the interior of the interval (0,1), S is the interior and
the boundary of the square whose sides have length 1, and C is the
solid cube whose sides have length 1. The following example will
show us that the cardinality of a set is independent of its geometry
and dimension. If you draw a line segment on a piece of paper,
that segment has the same number of points as the piece of paper,
which has the same number of points as the room in which you are
reading this. Thus even though these sets have different geometric
dimension they have the same cardinality.

Theorem 4.2.4 card(/) = card(S) = card(C).
Proof: It seems clear enough that
IcSccC
so that
card(/) < card(S) < card(C). (4.15)

To complete the proof we will produce a one-to-one function f :
C — I. This will allow us to conclude that

card(C) < card(I)
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and hence that card(/) = card(C). Play with that one for a while.
Suppose that a, b are numbers such that a < b and b < a. The only
way for this to happen is for a = b. We are simply using the fact
that this same property holds for cardinals. If you find the following
argument difficult, just skip forward. There is plenty of time and
no shame in coming back to these deliberations.

From analytic geometry we recall that the unit cube C is a set
of ordered triples,

C={(=zy2)|z,y,2€l}

The one-to-one function f: C — I that we need is defined as fol-
lows. Given an ordered triple (z,y, z) € C, write z,y, z as decimals

r = Tg. X1 T2 I3

Y = Yo. Y1 Y2 Y3

Z = 2. k1 23 23
where g = 0 or 1, and where xz),xz2,z3,... are digits in the set
{0,1,...,9}. Similar statements apply to the decimal expansions of

y and z. Furthermore, to avoid that nasty case where numbers end
in 999, we assume that the shorter decimal expansion that ends in
000 is used for z, y, and z. Then we define

f(z,y,2) = .ToYozo T1Y121 TaY222 T3Y3Zs . ...

Since the numbers z, Yk, 2 are in the set {0,1,...,9}, f(z,y,2) is
a decimal between 0 and 1. That is, f(z,y,2) € I and hence

f:C——»I

is a function. Since the numbers z, y, and z do not have an infinite
string of 9’s in their decimal expansion, the number f(z,y,z) does
not end in 999.

For example, to find

£(1.000,0.41415...,0.122)
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we write the three numbers as
r=10020 -,
y = 0.4 14 -+,
z = 0.1 21 -

Now shuffle them.
£(1.00,0.41415...,0.122) = .100 041 012 041 ---.

We will show that f is one-to-one. Suppose that

w= f(m'»ylvzl) = f(m,y,z) = .ToYozo T1Y1%1 T2Y222 T3Y3z3 * -

for some ordered triples (z,y, z), (z/,v/,2") € C. This is the unique
short way of writing w since by design w does not end in 999. Then
by the definition of f (applied in reverse) we have

/

r = Xg. Xy T2 T3 ... = T

— _ /
Yy = Y. Y1 Y2 Yys ... = Y
Z = 29. 21 %9 23 ... = 2.

Then (z,y,z) = (2/,v,2), which implies that f is a one-to-one
7y ¥

function. By our definition of < for cardinals,
card(C) < card(I).
Combining this with the inequalities (4.15), we see that
card(f) = card(S) = card(C)
as required to complete the proof.

The above example should strike you as contrary to the conser-
vation of mass or some such concept from physics. How could a line
and a cube have the same anything? The issue here is that we are
counting the points in a mathematical object, and points do not
have any mass and they do not have any other physical properties.
Physics and physical properties of lines and cubes never enter the
picture,

The surprises continue in the next result where we state, but do
not prove, that infinite space, a child’s toy block, and a 1 inch long
segment have the same cardinality.
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Theorem 4.2.5 Let R denote the one dimensional real line, let R?
denote the two dimensional entire plane, and let R® denote all of
three dimensional real space. Then

card(0,1) = card(R) = card(R?) = card(R?).
That is, cardinality is independent of spatial dimension.

This example should also upset your common sense. If we iden-
tify (0,1) with an inch long line segment, then you might believe
that certainly an inch has fewer points than the entire real line,
which has fewer points than the plane or all of three dimensional
space. Once again we are shown that our intuition regarding infin-
ity does not agree with the surrounding mathematical facts. The
theorems in the next section will show you why we are being so
careful in our discussion.

4.3 Two Infinities

Let us summarize what we have learned to this point. The cardinal-
ity of a set X is a way of measuring in precise mathematical terms
the number of elements in X. We saw that

card(N) = card{1%,2% 3%,...} = card(Q).
These sets are called countable. We saw that
card(0, 1) = card(unit cube) = card(R) = card(space).

These sets are called uncountable and I will explain why shortly.
We also saw that

card(N) < card(R).

We ask the natural question: How are card(N) and card(R) oth-
erwise related? Are the uncountable sets and the countable sets
two different types of sets? The uninitiated reader might argue
that since both sets are infinite, N and R have the same cardinal-
ity. The next result shows that this is not the case. A colloquial
and accurate interpretation of this theorem is the philosophical and
intuitive shocker that there is more than one infinity.
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Theorem 4.3.1 card(N) < card(R).

Proof: Evidently N C R, so by the definition of inequality of
cardinals,
card(N) < card(R).

What we have to prove now is that card(N) # card(R). To do this
we borrow from the Realists who visited Hilbert’s Infinite Hotel on
page 94.
Suppose, for the sake of contradiction, that we have a one-to-one
function
f:N—|0,1].

Make a list of f and its values in [0, 1].

f(1) =a1= ~ diz  diz  dig
f(2) =z2= .dn doz  dag
fB) =xz3= .ds ds dsg ...
f@) =zs= do de de -

In the above implied list we have given the shorter decimal expan-
sion of f(n) = z, for each n € N, if the shorter decimal expansion
exists. In this implied list, each d;; is a digit, a number in the set
{0,1,...,9}, and f(n) does not end in 999. Furthermore, dj; rep-
resents the first digit in the decimal form of x,, dos represents digit
number 3 in the decimal form of x5, and in general d,,, represents
digit number m in the decimal form of z,. We can now produce a
real number that is not on this implied list.
Define the digit d, as

g { i+l ifdn#9
1 0 1fd11=9

Notice that we have defined d, so that d; # di;.
Let

0 ifdyy=09
Notice that we have defined d, so that dy # das.

{d22+1 if dog # 9
dy =
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In general, define

4 — dnn + 1 if dpnp # 9
o 0 ifdpp=9"

Then d, # dpn.
The extra number z is given by the following decimal expansion:

T = .d1d2d3d4 e

If the number z ends in 999, replace it with the shorter decimal
expansion that ends:in 000.

Then z # x; because by our choice of d;, x and z, differ in the
first decimal place, d; # dy;. Also, x # x5 because by our choice of
do,  and x5 differ in decimal place number 2, dy # do2. In general,
x # x, because by our choice of d,, z and z,, differ in decimal place
number n, d, # dn,. Thus z is not on the implied list z,, z2, z3, . ..
of real numbers in [0,1]. This is what we wanted. Hence f is not a
bijection.

We have thus shown that there are no bijections f : N — [0, 1],
which proves that

card(N) # card[0, 1].

Since Theorem 4.2.3 states that card[0, 1] = card(R), we have shown
that
card(N) # card(R)

and therefore that
card(N) < card(R).

This completes the proof.

Subsequently, there cannot be a list of the real numbers R. Fur-
thermore, we conclude that the terms countable and uncountable
describe two different types of infinite sets. Those sets equivalent
to N are not equivalent to R. Since Q is a dense subset of R the
following result shows us that cardinalty does not depend on the
density of the set in the real line.

Theorem 4.3.2 card(Q) < card(R).
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Proof: Theorem 4.1.4 shows us that card(N) = card(Q) and
Theorem 4.3.1 shows us that card(N) < card(R). Then card(Q) <
card(R). This is what we wanted to prove.

Summarizing some of our results to this point, we see that

card(N) = card(Q) < card(R) = card(space).

How does that make you feel? There it is in plain mathematical
language. There are several infinities. We will see later that there
are more than just two. That should jolt you. Infinity is infinity and
that is that, you might have said. The answer to that argument is
that yes, all infinite sets are not finite, but infinity is not a number.
Infinity is not a cardinal. Infinity is not the last word on the size of
a set. It is only the beginning, like saying that something is large.
There will always be larger sets. Saying that a set is infinite is like
saying that a car has color. Yes, it has color, but which one? Is it
tan or silver? So when we encounter cardinals we will ask, “Is it
finite or infinite?” And if it is infinite we will ask “Is it countable
or uncountable?” This will describe somewhat which cardinal we
have but it will not be the last word on how large that cardinal is.
Keep an open mind as you read this section.

Because card(Q) < card(R) there must be real numbers that
are not fractions, not repeating decimals. A number z is said to be
irrational if it is not rational; that is, if z &€ Q. We let

Q' = the set of irrational numbers.

Unlike Q, there can be no implied list of irrational numbers. The-
orem 4.3.2 and a little intuition will convince us that Q@ and R are
equivalent sets.

Theorem 4.3.3 card(Q’) = card(R).

It is interesting to observe that this simple counting card(Q’) =
card(R) shows us that most numbers are not rational. This is con-
trary to your experience since every number you have ever seen has
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been a rational number. That changes nothing. There are many
more irrational numbers than there are rational ones. However pro-
fessional mathematicians consider it to be very hard to prove that
any given number is irrational. While it is true that = is irrational,
the proof is quite hard. We will show shortly that V/2 is an irrational
number, but we cannot show that V2 is irrational. Currently, no
one knows its rationality. If you have some facility with logarithms,
you might find it challenging to try to prove that

log,(3) is irrational.

(Hint: Read the proof of Theorem 4.3.4 first.) A simple question
that currently remains unanswered is this. If z and y are irrational
numbers, under what conditions is x +y irrational? For example, it
is known that v/3 + /2 is irrational. But what can be said of more
mysterious numbers like 2v29

Let’s settle back and catch our breath now. The earliest example
of an irrational number occurs around 600 BC in ancient Greece,
where the Pythagoreans showed that V2 is an irrational number.
They found this fact to be so disturbing that they threatened people
with a removal of their hands if they betrayed the great secret that
V2 is not a fraction of integers. We laugh at this today or we
gape in awe that rational people would react so extremely to a
mathematical fact. Today this fact is considered to be one of the
highlights of early mathematics. The proof is just as compelling
today as it was 2600 years ago. The proof that /2 is irrational is a
pivotal moment in mathematics. Prior to this, people who thought
about the universe thought that all of it could be described by
fractions, rational numbers. Thus the following result is a moment
of transformation in mathematics, physics, and science in general.
Do your best to follow it.

Theorem 4.3.4 /2 is an irrational number.
Proof: Before we begin we need to establish:
If n? is divisible by 2 then n is divible by 2. (4.16)
Equivalently, we will prove:

If n is not divisible by 2 then n? is not divisible by 2.
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The proof is a calculation. Suppose that n is not divisible by 2.
Then n = 2k + 1 for some k£ € N so that

n? = (2k + 1)% = 4k? + 4k + 1 = 2(2k* + 2k) + 1.

Thus n? = 2K + 1 where K is the integer 2k? + 2k, so that n? is an
odd number. This proves statement (4.16). Armed with this fact,
we can attack the irrationality of V2.

Assume for the sake of contradiction that /2 is rational. Then

VZ=_
m

for some integers n, m > 0. We assume without losing our generality
that the fraction —isin reduced form. Specifically,

at least one of the numbers n and m

is not divisible by 2. (4.17)

Squaring both sides yields
2
2= 3

Thus 2m? = n? and so n? is divisible by 2. Statement (4.16) implies
that n is divisible by 2 and hence we can write

n =2k
for some integer k. Squaring both sides we find that
om? = n? = 4k?,

so division by 2 yields

m? = 2k2.
Then m? is divisible by 2 and hence m is divisible by 2 by statement
(4.16). Thus both n and m are divisible by 2, contrary to the
statement (4.17). Hence our original assumption is in error, and we
conclude that v/2 is irrational. This completes the proof.

The reader can use the same argument to show that v/3 is irra-
tional and that in general ,/p is irrational for each prime p. This
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reinforces the above work that there are infinitely (actually uncount-
ably) many irrational numbers. The present work has the advantage
that we have implied the existence of a List of some irrational num-
bers.

V2,V3,V5, ﬁ, ... are irrational numbers.

Compare this to Theorem 4.3.3, which states that there are infinitely
many irrational numbers but which does not list them.

There are at least two types of cardinals, the countable and
the uncountable. We will see in the next section that uncountable
cardinals also come in many different sizes.

4.4 Power Sets

Let A be a set. Recall from Definition 1.3.1 that the power set of
A, P(A), is the set of all subsets of A. We will use the power set to
show that there are many infinite cardinals.

From Theorem 4.3.1 we know that card(N) and card(R) are
different infinite cardinals. The next result shows us that R and
P(N) have the same cardinality.

Theorem 4.4.1 card(R) = card(P(N)).

Proof: We will produce a one-to-one function
f : [07 1] - P(N))

thus proving that card[0, 1] < card(P(N)). Then by Theorem 4.2.3,
we will have shown that card(R) = card[0, 1] < card(P(N)). If you
find this proof is stretching you a bit too far, skip to the end. There
is no examination at the end of this discussion.

In this age of computers it should come as no surprise that each
real number can be written as a binary decimal. That is, to each
real number z € [0, 1] there is a string

r = .b1b2b3 ce
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of bits by,bq,bs,... € {0,1}. Specifically, we can write down an
equation z = .b1bobs. .. exactly when

1
T = b12+b222+b3§+
For example,
1 1 1
- = 1= 0
2 2 + 22 +02 ’

. 1
where the coeflicients of the remaining fractions on are 0. Thus we

will write

1 —
- = .100.
2

Another example is

5 1 1
S = 0— 1ol
2 = lyt0g+lg +024+ =

. - . 1
where the coeflicients of the remaining fractions 5n 8re 0. Then

— = .10100.
5 00

Furthermore, we can write

1 1 1
- = 1= — 0
3 02+ 22+02 +123+ 53
where the pattern of coeflicients 0,1,0,1,0,1,... continues indefi-

nitely. Thus

1 —
- = .010101.
3

Now, write the elements of {0, 1] in the usual way. Given an
z € [0,1], write = as a binary number as above

T = .b1b2b3 v
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and pair the decimal bits by, by, b3, ... with N as follows.

1 2 3 4
by by by by

Construct a subset f(z) = U, C N as follows.

n € U, exactly when b, =1
n € U, exactly when b, =0 "~

That this defines a subset of N is clear since the bits b, can only

1
be 0 or 1. For example, let’s see what set U, corresponds to 3
1 — 1
Because 3= .010101, the pairing for 3 looks like this.
1 23456
010101

Then the elements of U, are those paired with a 1. That is,

f<%) ={2,4,6,...}.

The reader can show that the pairing for
x = .101001000100001000001...
results in the set
U, = {1,3,6,10,15,21,...}.

Search for the pattern in the decimal expansion for z.
There is a possible point of confusion that we should discuss.

1
There are two very different ways to write 3 as a sum of powers of

1
—. Th
5 ey are

= DN =

i
]

]
+
[
+

| —
+

| —
+



4.4. POWER SETS 135

or in other words

1 ~ -
- = .10 = .0l
2

1
Which of these sums should we use in defining f (5)7 Let us agree

that, in case there are two or more ways to write a fraction z as a
binary decimal expansion, we will take the one with fewer 1's. Thus

f<%> - {1},

Our goal now is to show that f is one-to-one. This is done by
showing that

we take 3 =.10 and so

z # y implies that f(x) # f(y).

So suppose that « # y and write each as a binary decimal.

r = .bl b2 b3 b4

= .01 C C3 (4

Since x # y, they must differ in some position, say, the nth position.
That is,

bp, # Cp.

We may assume without loss of generality that b, = 1 and that
¢, = 0. Then by the definition of f

n € f(r) = U and
n & fly) =V

so that U and V do not contain the same elements. It follows that
flz) = U # V = f(y)

and so f is a one-to-one function.
Thus f: [0,1] — P(N) is a one-to-one function, and therefore

card[0, 1] < card(P(N)). (4.18)
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Conversely, the following careful inspection of P(N) will reveal
that

card(P(N)) < card[0, 1]. (4.19)

Combining the inequality (4.19) with the inequality (4.18) will then
yield the equation

card(R) = card[0, 1] = card(P(N)).

When we are done with the inspection, the proof will be complete.
What we are going to do is to define a one-to-one function

f:P(N)——[0,1].

First, write each subset of N as a binary sequence. Given a set
U C N, define a binary bit b, as

b — 1 ifnelU
"l 0 ifngU

and then
U corresponds to bybiby. ...

This correspondence is so detailed that we can identify U with
bobiby . ... They both contain the same information, namely, which
numbers are in U and which are not.

For instance to construct the binary sequence that corresponds
to the set U = {0,2,4,...} of even numbers, we find each binary
bit, beginning with 0.

bg = lsince0eU
Osince 1 ¢ U
bp = 1since2€ U
b3 = Osince0 ¢ U

o
S
Il

(Yes, 0 is an even number.) Thus the set of even numbers corre-
sponds to
1010.
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The set U = {5} corresponds to 0000010. If U corresponds to
010101, then U = {1,3,5,...} = the set of odd numbers. If U
corresponds to 0000111, then U contains all the natural numbers
except 0,1,2,3. The set U of prime numbers corresponds to the
binary sequence that begins with

00110101000101000101.

You can find the next five terms in that sequence if you wish. Thus
we will treat each U € P(N) as a binary sequence bob; b; . . ..
Consider the function

f:PN)——10,1]
defined as follows. Write each U € P(N) as a binary sequence
U = bgbiby. ..
as we did above. Then define f(U) to be the real number
f(z) = .bobrbs ...

written as a decimal number. For example,

_ 1
FO10) = 01= —,
FIT) = .m:é,
f(1010) = .1010.

Evidently, f(U) just places a decimal point in front of the binary
sequence bgb1b, . .. corresponding to U, making the sequence a real
number .bgb b, .. ..

We will show that f is one-to-one. Suppose that

U # V for some sets U,V € P(N).
We must show that f(U) # f(V). As we did above, write the sets
U =bgbiby... and V = ¢yc109. ..

as binary sequences. Since U # V there are binary bits, say, bn, cn,
such that
b, # cn.
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But then the decimal numbers f(U) and f(V) differ in the nth
decimal places. That is, these are different numbers.

f(U) = .b0b1b2 ce 75 CgC1Cy ... = f(V)

Hence f is a one-to-one function.
Consequently, card(P(N)) < card[0,1]. Since we have already
proved that card[0,1] < card(P(N)), we conclude that

card|0, 1] = card(P(N)),
which concludes the proof.
In Theorem 4.3.1 we showed that
card(N) < card[0, 1] = card(R),

thus showing that there are at least two different infinite cardinals.
This presents the problem of determining how many infinite cardi-
nals there are. It seems unlikely that there are just two so we look
for more.

The following beautiful result shows us that no matter which
set A we choose, P(A) is always a larger set than A. That is, the
cardinality of P(A) is always more than the cardinality of A. This
fact is certainly true of finite cardinals as we have proved that

if card(A) = n is finite then card(P(4)) = 2™.
We see immediately that
card(A) = n < 2" = card(P(A))

for any n € N, thus proving that P(A) has more elements than the
finite set A. If A = {a;,...,a,} has exactly n elements and if we
let

P2(A) = P(P(A)),

P(A) = P(P(P(A))) =

PUA) = P(P(P(P(A))))

Il
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(note the use of 4 P’s in the third line), then we see that

card(P(4)) = 27,

card(P2(4)) = card(P(P(4)) = 2¥ since card(P(A4)) = 27,
card(P3(A)) = card(P(P%(A))) = 22" since card(P2(A)) = 27,
card(P4(4)) = card(P(P3(A))) = 22 since card(P3(A)) = 22",

This leads us to the infinite sequence of finite cardinals

n<2m<2? <2 <,

Our next result shows that there is a similar sequence of infinite
cardinals. We challenge the reader to find the similarities between

the argument used below and the argument used to prove Theorem
4.3.1.

Theorem 4.4.2 If A is a set then card(A) < card(P(A)).

Proof: First we establish that card(A) < card(P(A)). The sym-
bol A is the Greek letter called lambda. The one-to-one function we
need is

At A—— P(A)
defined by
Az) = {z}.
Certainly A(z) = A(z) implies that {z} = {2’} or equivalently
that x = z’. Thus A is a one-to-one function and hence card(4) <
card(P(A4)).

To prove that card(A) < card(P(A)) we need to show that no

function

is onto, thus showing that there are no bijections between A and
P(A). It will then follow that card(A) # card(P(A)) and hence
that card(A) < card(P(A)).

Given a function F : A — P(A) and an x € A, observe that
F(x) € P(A) so that F(z) is a subset of A, F(z) C A. We can ask,
Isx € F(z) orisx ¢ F(x)? Define a special set X C A by

X={zecAlz¢gF(a)}.
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The set X is a remarkable observation made by Bertrand Russell
and has no motivation. Let’s accept the genius that uncovered this
idea, that it works well, and then see how it is used in our argument.
We claim that there does not exist an x € A such that F(z) = X.

Suppose to the contrary that there is an € A such that F(z) =
X. We seek a contradiction. Since X is a set we ought to be able
to decide whether or not z € F(z) = X or z & F(z) = X. Suppose
that ¢ € F(z) = X. Then z satisfies the predicate defining X,
which is ¢ € F(z). This is not possible since F(z) = X is a set. So
it must be that z € F(z) = X. In this case z satisfies the predicate
for X, so that z € X. But this is also impossible (z ¢ X and
z € X) since X is a set. Thus we cannot decide if z € F(z) = X
orif z ¢ F(z) = X. This contradiction to the definition of set
shows us that our initial assumption that F(z) = X for some z is
a falsehood. Thus there is no z € A such that F(z) = X. This
proves our claim, thus F : A — P(A) is not onto, and therefore
card(A) # card(P(A)). This completes the proof.

Theorem 4.4.3 card(N) < card(P(N)).

Theorem 4.4.2 allows us to prove the following counterintuitive
result. In a language devoid of mathematics it implies that there
are infinitely many infinities.

Theorem 4.4.4 There is an infinite sequence o < o) < g < ...
of infinite cardinals.

Proof: If we let ag = card(N) and let a; = card(P(N)), then
Theorem 4.4.2 shows us that

oy < Q.
Next, consider the sequence
P(N), PAN)=P(P(N)), P(N)=P(P*N)),
and let

oy = card(P(N)), oy = card(P*(N)), a3 = card(P*(N)),
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In other words, if we let P(N) = A then P?(N) = P(A) is the power
set of A = P(N). Theorem 4.4.2 shows us that

a1 = card(P(N)) = card(A) < card(P(A)) = card(P*(N)) = ay.

That is, o, < a1 < as.
In general, let A = P*(N). Because

PHHHN) = P(P™(N)) = P(A),
Theorem 4.4.2 shows us that
card(P™(N)) = card(4) < card(P(4)) = card(P(P™(N))) = card(P™*}(N)).

By setting

o, = card(P*(N)) foreach n € N

we have constructed an infinite chain of infinite cardinals

<< ... << Qpp < .. ..

Specifically,

card(N) < card(P(N)) < card(P?(N)) < card(P3}(N)) < .. ..

This ends the proof.

In pictures, the above chain can be realized as in the following
line. This is not the real line. It is just a visual means of describing
a chain of cardinals.

0 1 2 eee card(N) card(P(N)) card(P*(N)) eee
[ [ ] | | |

4 i T 1 [ 1

Let us examine another method for constructing cardinals and
infinities. Recall that if A is a set then {0, 1}* is the set of functions
f:A—{0,1}.
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Theorem 4.4.5 Let A be a set. Then

card(P(A)) = card({0,1}%).

Proof: We will produce a bijection
F : PA) —— {0,1}*
from which we will conclude that

card(P(4)) = card({0,1}*).

{0,1}

All that fy __[ fu )
maps to 1 i

fu

Given a subset U C A, define a function
fv + A——{0,1}
as in the above diagram.

1 ifzelU
folz) = {o ifxgU -~



44. POWER SETS 143

Thus fy(xz) = 1 precisely when z € U. Otherwise it is 0. Clearly

fv € {0,1}4.
so that the rule
FU) = fu
defines a function F : P(A) — {0,1}*. We will show that F is a

bijection.
To see that F' is one-to-one, let

U#V

be subsets of A. That is, take distinct elements of P(A). By the
definition of equal sets some element z is in one set and not the
other. We assume without loss of generality that there is an element
z € U that is not in V. Let fy be the function that takes V' to 1
and all else to 0. Then

zelU and z€V,

so that

fu(z) =1 while fy(z)=0
by the definitions of the functions fy and fv. Then fy and fy have
different rules

FU) = fv# fv=F(),

so that F': P(A) — {0,1}* is a one-to-one function.
To see that F' : P(A) — {0,1}* is an onto function, let f €
{0,1}*. Define a subset of A4,

U = {zeA|f(z)=1}

That is, U = f~!(1), or in other words, U is the set of all z € A
that are sent by f to 1. (See the above diagram.) Then

flz) = 1 = fy(z) forallz €U and
flz) = 0 = fy(z) forallz ¢U.

Since f and fy have the same rules, f = fy, and since F(U) = fy
we have

f=fv=FU).
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It follows that F': P(A) — {0,1}* is onto.
Hence F'is a bijection and therefore

card(P(A)) = card({0, 1}4).

This completes the proof.

Theorem 4.4.6 1. card(N) < card({0, 1}V).

2. card(R) < card({0, 1}R®).

Proof: 1. By Theorem 4.4.2, card(N) < card(P(N)) and by The-
orem 4.4.5, card(P(N)) = card({0,1}N). Thus card(N) is strictly
smaller than card({0,1}"). Part 2 is handled in a similar fashion.
This completes the proof.

The notation we will use for the exponents is also an exponent.
Given a set A let

card(A) =R

(read as aleph) and then let

card({0, 1}4) = 2%,

This does not imply that we are taking a power of 2 to some infinite
cardinal. It is just a convenient method for writing some cardinali-
ties. There is something more to see here though.

Theorem 4.4.7 Let X be a cardinal. That is, X = card(A) for
some set A. Then

N < 28,
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Proof: From Theorems 4.4.2 and 4.4.5 we see that
N = card(A) < card(P(A4)) = card({0,1}4) = 2°¢(H = oX,
This completes the proof.

It is a tradition going back over 100 years to let

card(N) = Ry,

where N is read as aleph nought. Then with Theorem 4.4.5 and our
new notation we can write

Ry = card(N),
2% = card({0,1}*) = card(P(N)),

2 = card({0,1}*1") = card(P(P(N))),

which by Theorem 4.4.5 leads us to an infinite sequence of infinite
cardinals

01 2 eee R, A 2" cee

Jos

|

T 1

The next question we will explore is, can we find some inequality
between card({0,1}") and card(R)?

4.5 The Arithmetic of Cardinals

We will use the Greek letters o (alpha) and 3 (beta) and the Hebrew
letter X (aleph) to denote general cardinals. We will also use the
traditional notation of

Ry = card(N)
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(pronounced aleph nought). It was Georg Cantor in his ground
breaking paper on cardinal numbers [1] who first used the notation
N for cardinals.

What you are about to read should be interesting. We are about
to define the addition and multiplication of natural numbers. This
is the arithmetic that you learned in elementary school. We will
define 1+ 1 and show that it is 2. We will define 2 -3 and show that
it is 6. We will eventually use this arithmetic to define operations
like addition and multiplication on infinite cardinals. And surprise!
Ny + No = No. Now isn’t that what you expected of infinity? What
would you expect of the following sum?

Ro + 2% = 2

Let us define the addition of natural numbers. Sets E and F are
said to be disjoint if ENF = 0.

Definition 4.5.1 Let n,m € N. Choose disjoint finite sets E and
F such that card(E) = n and card(F) = m. Then we define

n+m=card(EU F).

As our first example of how to use this definition, we will prove
an elementary arithmetic fact. Recall that 1 is the set of all sets
that are equivalent to the set {e}, and similarly 2 denotes the set
of all sets that are equivalent to {e, J}. Then

card({e}) = card({d}) =1
so that

1+1 = card({e}uU{d})
= card({e,0})
= 2

We have just proved that 1+1 = 2. We did not state this numerical
identity, we did not ask for measurements, and we did not accept
the teacher’s word for it. We proved it with the same certainty
that a proof about congruent triangles would possess in a geometry
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course. Thus set theory is a point of view that allows us to examine
all of the mathematical fundamentals. That is its power.

This idea of considering the addition of natural numbers as the
union of finite sets is what we will use to define the addition of
mfinite cardinals.

Definition 4.5.2 Suppose that « and 3 are infinite cardinals.
Choose any sets A and B such that card(A) = o and card(B) = §.
Then we define

a+p = card(AU B).

The power here is that to add the infinite cardinals a and 3 we
may choose any of the sets A and B for which card(4) = a and
card(B) = . Unlike the addition of finite cardinals, the sets A and
B do not have to be disjoint when adding card(A) and card(B).
This statement is actually a theorem. Professionals use a weaker
statement as a definition. But for our purposes, this definition is a
good working definition. Thus « + ( is independent of our choice
of sets A and B. The professional would say that the definition of
the addition of infinite cardinals is well defined.

The addition of infinite cardinals has some of the properties as-
sociated with the addition of real numbers, and as we will see the
addition of infinite cardinals can be quite unexpected. One similar-
ity is the commutative property of addition. Given any cardinals «
and f3, then

a+f=p+a.

To see the truth of this matter choose sets A and B such that
a = card(A) and § = card(B). Then

a+p = card(AU B)
card(BU A)
= B+ Q,

I
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which is what we wanted to prove. We have just proved that addi-
tion is commutative. This is a fact that has been handed down to
you through educational tradition but no one (I'm betting) in your
past proved that this property was true of all cardinals or numbers.

For example, if we use the traditional symbol

¢ = card(R),

then
Ro'f-c = C+N0 and
Mot ¢ = 42

The symbol ¢ stands for the continuum, an old term used to describe
the real line. This shows us that the addition is commutative but
it does not show us what the indicated sums are.

As children we might have heard an adage that infinity plus I is
infinity or that infinity plus infinity is infinity. This is mildly true
since any number of elements added to an infinite set still yields an
infinite set. However, as we saw in the previous sections, the term
infinite is just too coarse a measurement for the size of a set. It is
like saying, the house has color. Sure it has color, but which ones?
Saying that something is infinite simply says that it is not finite.
It does not tell us a thing about the cardinality of the set. Is the
cardinality R, or ¢, or some other value?

As an example of how to add infinite cardinals, consider the
following result. One might read this as the old adage Infinity plus
one is infinity. Our work to date brings mathematical truth to this
adage.

Theorem 4.5.3 Let X be any infinite cardinal.
1. 0+ X=X

2. If n > 0 is a natural number then n + X = N,
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Proof: 1. By definition there is a set A such that X = card(A),
and by definition

0 = card(®).

Then we have

0O+

card(@ U A)
= card(A)
= N

This proves part 1.

2. Since A is infinite and 7 is finite, there is a set {a;,...,a,} C
A of n elements contained in A. Then

n = card{ay,...,an}
and so

n+X = card({a1,...,a,} UA)
= card(A)
= N

This proves part 2, which completes the proof.

For example, part 2 above shows us that
No+1=12N
and that "
R + 1007 =Ry

10
even though 100" s a huge finite natural number.
The next result might be read as infinity plus infinity is infinity.
This is a true statement, but we can say with certainty which infinite
cardinal the sum is.

Theorem 4.5.4 Let X be any infinite cardinal. Then

N+ N=N
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Proof: We know that ® = card(A) for some set A. Hence

R+R = card(AU A)

= card(A)
= N
This ends the proof.
Then, for example,
Ro + Vo =Ny
and
c+c=c.
and for any infinite cardinal R,
2N 4 X =28,

You see? An infinite cardinal plus the same infinite cardinal is
the same infinite cardinal. Or in other words, any infinite cardinal
added to itself is itself.

For that reason, we will not subtract cardinals because subtrac-
tion makes no sense on infinite cardinals. To see the truth of this
matter, consider the following example.

Example 4.5.5 We will show the following.

There is no way to define Xy — N as a cardinal.

Assume to the contrary that we could define the subtraction Ry —Rg
as the opposite of addition. The implied value of the subtraction
NO - NO is

NO - NO = 0
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Now, by part 2 of the above theorem,
1 + NO = No.

Using the assumed subtraction, we would then subtract Ry from
both sides of the equation, thus revealing that

1+ (N —Rp) = Rog— N
140 =0
1 = 0

which is ridiculous. This mathematical mistake shows us that our
initial assumption is wrong, and thus Ny — Ny cannot be defined.
This concludes the proof.

In fact, given any cardinal X we cannot define X — R. If we

cannot define X — N then a general subtraction of cardinals cannot
be defined.

So let us decide what the addition of two cardinals is. That is,
what is o+ 37 The next result gives further mathematical certainty
to the old chestnut infinity plus infinity is infinity.

Theorem 4.5.6 Let o < 3 be infinite cardinals. Then

a+ (3= 3 = the larger of two cardinals.

Proof: To prove this result we will need sets A and B such that
o = card(A) and B = card(B). By the definition of inequality of
cardinals (see page 117), there is a one-to-one function

f:A-— B.
We will show that A and f(A) are equivalent sets. The function

f: A — B restricts to one F : A — f(A). Thus f and F
have the same rule but they map into different sets. The following
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picture will help you see what we are doing with f, F, and f(A).
B

All that f
maps onto

f(4)

Everything Else

Specifically, f may not be onto, but we will show that F is a
bijection. The function F is one-to-one because that is how we
chose f. To see that F is onto, let y € f(A). By definition of f(A)
there is an z € A such that

F(z) = f(z) =y

Then F is onto, hence F' is a bijection, whence A and f(A) are

equivalent.
Since f(A) C B, f(A)U B = B, so that

a+f3 = card(A) + card(B)
card(f(A)) + card(B)
card(f(A) U B)
card(B)

= B.

This completes the proof.

il
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For more familiar cardinals there are the following examples.

No+c=¢

because by Theorem 4.3.1
card(N) = Ry < ¢ = card(R).

Furthermore,

Ro + 280 = 2o,

because by Theorem 4.4.7
Ro < 2%,
In general, for infinite cardinals ® we will apply Theorem 4.4.7,
N < 28

to see that

N+ 28 = 2R

A curious consequence of this addition is that Ny behaves like 0
on the infinite cardinals. You see

Ry < R

for each infinite cardinal R, so by Theorem 4.5.6

Ng + N = N for infinite cardinals N.

Don’t try to cancel that X from the equation. In general, the cance-
lation of infinite cardinals does not work. Again, our finite intuition
is worthless in the infinite setting.
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Since we can add cardinals to themselves we can define multiples
of cardinals. Let R be an infinite cardinal and let n € N. Then

n-R= R+...+8 =N
N’

n summands

Specifically,
2-Ng = Ny and
n-c¢ = cforeachneéeN.

It is important for us to see that

this multiplication is not associated with a division of cardinals.

Here’s why. Assume to the contrary that we can divide by Rg. One
of the fundamental identities implied by the existence of a division
is that

1
Ny-— = 1.
0 X
By applying the assumed division we would then have the following
series of equations:

2R = N
1 1
2. Ry — = Ny —
0 ™ 0 ™
2-1 =1
2 = 1,

another clear contradiction. Therefore our initial assumption must
be tossed out and we conclude that we cannot divide by Ny. This
may be your first experience with a multiplication that is not asso-
ciated with a division. It might seem strange at first but the laws
of mathematics demand it.

Moving on to the multiplication of infinite cardinals, observe
that
{1,2} x {1,2,3}
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consists of the following 6 pairs.

(1,1) (1,2) (1,3)
(2,1) (2,2

We have just proved the arithmetic fact
2x3=6.

You should be sitting straight up in your chair when I tell you some-
thing like this. Here is a fundamental concept of human intellect
and I am showing you how to prove it from more basic facts.

The reader can write down the 15 pairs that make up {1, 2,3} x
{1,2,3,4,5}. The point behind these examples is that if E and F
are finite sets, then we have

card(E x F) = card(E)card(F).

To see the truth of the matter suppose that E = {1,...,m} and
that F = {1,...,n}. Arrange E x F as a rectangular array of pairs

(z,y)-

L1 (1,2) (1,n)
21 (2.2) (2.n)
(m1) (m,2) ... (m,n)

There are m = card(E) columns and n = card(F') rows in this array
so there must be m - n = card(E)card(F) pairs in this rectangular
array. This is what we wanted to prove.

Thus motivated, it is reasonable to define the product of infinite
cardinals as follows.

Definition 4.5.7 Let o and 3 be infinite cardinals. Choose sets A
and B such that card(A) = « and card(B) = . We define

a-f = card(A x B).
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As before, we want to verify that the multiplication of cardinals
is commutative. That is,

a-B=0-«a.

To see this, choose sets A and B such that o = card(A) and 8 =
card(B). Then the reader is invited to show that the function

f:AxB——BxA
defined by switching components

f(a,b) = (b,a)
is a bijection. Then card(A x B) = card(B x A) and hence

a-f = card(A x B)
= card(B x A)
= [ e

This is what we wanted to prove.

Thus, like the multiplication of numbers, the multiplication of
infinite cardinals is commutative. This may be the totality of the
similarity between the multiplication of natural numbers, and the
multiplication of infinite cardinals.

Let us examine the product ¥Ng - Ny under this multiplication.
Since g = card(N) we can write

NO . NO = card(N X N)
card(N) by Theorem 4.1.5
= No.

That is,

No - No = No.
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This multiplication must strike you as strange. The only real num-
bers z for which z -z = z are 0 and 1. And Xy is not special in this
regard. In general,

N-X =R for any infinite cardinal X.

Furthermore, since X - R = R? we are led to consider square roots of
cardinals. Things are not what our old common sense might have
said to us.

VR =R for any infinite cardinal X.

This is another difference between natural numbers and infinite car-
dinals. The square root of most natural numbers is not a natural
number. However, the square root of any infinite cardinal is an in-
finite cardinal. Here is another peculiarity. Question: How many
natural numbers do you know of that are their own square roots?
Answer: Only two, 0 and 1. And yet every infinite cardinal is its
own square root. The land of infinite cardinals is indeed strange.

Here is a property of multiplication that may not agree with
your calculus lectures. (Skip this discussion if you have never had
calculus.) Limits of the form — require an application of L'Hopital’s
Rule. That is, if f{z) and g(z) are functions such that f(a) =
g(a) = 0, then the limit

lim _f(:c)

r—a (z)
can be almost any real number. The value of the limit depends on
the functions f(z) and g(x). For example,

lim sin(z)

z—0 x

=1

and
I 20 -1
=21 73 +2z4+1
Specifically, the limits of the form 0 - oo can have any value. In set
theory no such rule is necessary.

2.
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Theorem 4.5.8 Let X be an infinite cardinal. Then

0-R=0.

Proof: This one is tricky. There is a set A such that card(A) = X.
See Example 1.2.2 to see that § x A = @ for any set A. Hence
0-R =card(@ x A) = 0. This completes the proof.

The following theorem shows us that like addition, the multi-
plication of cardinals is in some respects different from the multi-
plication of real numbers. One major difference between the mul-
tiplication of numbers and infinite cardinals is the following rule of
evaluation.

Theorem 4.5.9 Let o < 3 be infinite cardinals. Then

a- == the larger of the two cardinals.

We will not prove this one, but we offer the following examples.

Ro-Ro = Ny,
c-c = ¢
No-¢ = ¢ by Theorem 4.3.1,
Ro N = R for any infinite cardinal ¥,
N-N-NX = X for any infinite cardinal R.

The results in this section show us that the arithmetic of infinite
cardinals will require some thought before we can apply it or ma-
nipulate with it. Read the above arithmetic facts while reminding
yourself that these equations do not hold for real numbers other
than 0 and 1.

Inasmuch as we have defined

R =R-R,
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it is important that we define powers of cardinals. Recall that given
sets A and B

B4 is the set of all functions f : A — B.

Let us write down the rules of all of the functions in {1,2}{1:23} A
function f : {1,2,3} — {1,2} is given by its images of 1, 2, and 3.
Thus we can write down the rule for f by just listing how it behaves
on 1, 2, and 3. A very effective method is to list

f=la,b,c],
where a,b,c € {1,2} and where
f)=a,f(2)=b,/3)=c
For instance, suppose that we have a function
f:{1,2,3} —— {1,2}
whose rule is given by

f)=1f2)=1f@)=1

Then the very effective method for writing down f is

F=,11.

The function
g:{1,2,3} — {1,2}

whose rule is given by

is written down as
g=12,1,2].

Furthermore, given a triple

(1,2,2]
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we have defined a function
h:{1,2,3} —— {1,2}
whose rule is given by
h(1) = 1,h(2) = 2,h(3) = 2.

Let us count the number of functions in {1,2}{%3}. Since [a, b, |
is a random function and since there are 2 choices for a, 2 choices

for b, and 2 choices for ¢ we see that there are 2® functions f in
{1,2}{1:23} That is,

card({1,2}11%%) = 28 = card({1,2})cerd{1:23D

In general, if E = {1,...,n} and F = {1,...,m} are finite sets
then each function in FZ can be written as a finite sequence

[yl,y2a" . aynla

where y1,...,¥» € F and where

f)=wy,...,f(n) = yn.

For each k there are exactly m choices yi for the image f(k) under
f. Since there are m choices made for each of the n values 4, . . . , Yn,
there are exactly m™ functions in FZ. In other words, if E and F
are finite sets then

card(EF) = card(E)ed(F)

This motivates the following natural definition of exponential
values of infinite cardinals.

Definition 4.5.10 Let o and (3 be cardinals. Choose any sets A
and B such that a = card(A) and 8 = card(B). Then

B* = card(B4).
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In particular,

2% = card({0, 1})4™ = card ({0, 1}V).

Theorems 4.4.2 and 4.4.5 show us that
card(N) < card(P(N)) = card({0, 1}")

for the infinite set N so that by Theorem 4.3.1

Ny < 2Ro.

Consider this inequality in a more general context. Let X be an
infinite cardinal and let A be a set such that X = card(A). Then

2% = card({0,1}4)

and hence Theorem 4.4.5 shows us that
N < 2%

Moreover, since 28 is also a cardinal, we can form the cardinal

R

3

22

which is properly larger than 28. Iterating this process beginning
with Wg produces an infinite chain of infinite cardinals

Ro
Ry < M0 < 220 927
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The diagram below illustrates these inequalities. This is not the
real line. It is just a visual means of describing a chain of cardinals.

01 2 oeee Ng 2Ro 92" coe

NI | l |

f 1 1 T 1 ¥

We leave this section with a question and a list of small infinite
cardinals that summarizes our research to date.

Ro = card(N) = card(Q) = card(N x N)

card(0,1) = card(R) = card(R?) = card(P(N)) = 2%

Ro
Ry < 2o < 220 £ 9277

Question: Is there a cardinal between card(N) and card(R)? Specif-
ically, is there a cardinal ®; such that

card(N) < X; < card(R)?



Chapter 5
Well Ordered Sets

5.1 Successors of Elements

The set of natural numbers N has an interesting property.

The Well Ordered Property: Given any element n € N
there is a unique next element or successor element n*.

Thus there is exactly one successor element n*. You know n*
‘as n + 1, for example, 0t = 1, 12* = 13, and 121" = 122. There is
no element z € N such that n* = 0. Other common sets have this
property and we tend to think that every collection has the Well
Ordered Property. For example, suppose that P = { P}, P, P3} is
a set of three people. Our culture automatically endows P with
several well orderings. We give P a well ordering by saying that
the smallest element will be the shortest person, say, P, the next
element will be the next tallest person, say, P,, and then the tallest
person, P;. We would write

Pl < P, < P

Good. This is a well ordering of P by saying that the symbol <
points to the shorter person. Furthermore,

P1+=P2, P2+=P3.
There is no element z in P such that z+ = P, or P{” = z.

163
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Height is not the only way to well order P. Suppose that P, is
older than P; and that P; is older than P». Then we might well
order P by age by writing

P2 < P3 < Pl'
In this case < points to the younger person. Thus
Py =P, Pf =P

under the age well ordering. There is no element z in P such that
z¥=Por P/ =1.

You might also well order P alphabetically on the last names of
the people in P. Thus if P, is named Himmel, if P, is named Frugal,
and if P; is named Briar, then under the alphabet ordering

P <P <P.

Thus P;” = P, P = P, and there is no element z in P such that
Pt =z.

We have ordered P in different ways by considering different
numbers associated with people. We are constantly well ordering
people and their lives when we say “I love you more” or “You're so
much better than him.” These sentences imply that given any two
people we can assign an inequality to them:

P, < P, if P is “better than” P,.

In this example < points to the better person. Most of us well order
people on a continual basis even when an ordering is not called for.
After all, can a parent declare which of their children they most
love? I don’t think so.

The power set P(A) of & set A is a naturally occurring example
of a set that is not linearly ordered in the natural way. We define
an order < on P(A) that is not a linear order as follows.

Given X,Y € P(A) then X <Y if XCVY.
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Take, for example, P({1,2,3}). The elements {2}, {1,2}, and {2, 3}
€ P({1,2,3}) satisfy

{2} ¢ {1,2} and {2} C {2,3}.

We might consider the two elements to be successors of {2}. Since
{2} does not have a unique successor element, P({1,2,3}) is not a
well ordered set. A similar argument shows that #* does not exist
because it cannot be defined uniquely under the subset ordering <.

0c{1}, 0c{2}, 0cC{3}

However, we can define an abstract well ordering < on P({1, 2, 3})
by picking an ordering at random on the 8 elements of P({1,2, 3})
as follows.

{1} <0 <{1,2,3} < {2} <{2,3} < {1,3} <{1,2} < {3}.

Notice that this ordering does not have much to do with the subset
inclusion C. It is simply an ordering that your author chose to make
a point. Abstract well orderings are still well orderings, and they
will be treated as legitimate well orderings on sets.

The set R of real numbers is an example of a set that possesses
a linear order < but that is not well ordered. For example, v2 is a
real number but there is no next real number, \/§+. That is, there
is no real number that is next on the real number line after \/§+.
v2 + 1 will not do since

1
\/§<\/§+§<\/§+1.

There should be nothing between a number and its successor.

It is also apparent that Q is not well ordered. 0% does not exist
as a rational number. We cannot use 1 as 0% in Q since 1 is not the
next rational number larger than 0. This is clear once we write

1
0<=-<1
2
So well ordered sets are going to be thin sets. Given an element z,
there is a next value or successor value z*.
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There is another interesting example of a set that is not well
ordered, but is still quite thin. Let

111
W = 1,=, =, =, ...
{O? b 2? 3) 4’ }
and let < be the usual ordering of real numbers. Then in the set
1t 1t
W, 3 = 1, 1 -3 but 0% is not to be found in W. Let’s argue

about that. Suppose Q* exists in W. Then

0t = ~ for some n € N.
n

1
But then — should be the next value in the set that is larger than

n
0. This is not the case since
1 1

0< —r < —.
n+1 n

Hence, in W, 0% does not exist. Therefore W is not well ordered.
I leave it to the reader as a challenge problem to justify to your-

self that the set
111
U— {1,5,5,1,...}

is well ordered. Just try to find z* for each z € U.

The well ordered set of natural numbers N satisfies some inter-
esting properties that we will use later in a more general setting. N
satisfies the following property.

The Trichotomy Property: Given n,m € N then ezactly one of
the following relationships holds.

n<mor m<n Oor n=m.

For example, the solution to 2 = z + 1 satisfies exactly one of
the comparisons £ < 0, 0 < z, or z = 0.
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Another example is the age n, of the youngest mathematics
professor in Canada. This number n, satisfies exactly one of the
following options. Either

n, < 22 and we say that the mathematics professor is younger than 22 |
or n, > 22 and we say that the mathematics professor is older than 22 ,

or n, = 22 and we say that the mathematics professor is 22 years old.

Even though we do not know the age n,, we can still state that it
satisfies the Trichotomy Property.

A property closely aligned with the Trichotomy Property is the
following.

The Minimum Property: If A is a well ordered set then each
subset of A has a unique minimum element.

Each nonempty set in N contains a unique least element. That
is, given X C N there is an element zg € X such that zq < z for
each z € X. For example, {7,8,9,10,11} C N has least element 7,
while

{n| nis the age in years of a Canadian mathematician}

has a unique least age n, that we cannot specifically identify. We
would all agree, though, that this age n, is somewhat more than 10
and somewhat less than 100.

A hard to verify minimum natural number is the minimum nat-
urally occurring temperature in degrees Celsius on the surface of
the Earth. For our purposes here this temperature will not have
a decimal value, but only a whole number value. While we can
safely say that this minimum temperature is smaller than 100°C
and more than —100°C, we cannot say what that minimum tem-
perature is without first measuring temperatures everywhere on the
Earth’s surface. However, the Minimum Property tells us that such
a minimum temperature exists, whether or not we have made the
measurements.

If you are given a set of people measured only as closely as inches
(i.e., their heights are in inches but not in fractions of inches), then
these heights have a unique minimum height. It might be that the
heights are smaller than 120 inches and that they are greater than 1



168 CHAPTER 5. WELL ORDERED SETS

inch, but there is a unique minimum height A, and there is a person
whose height is h,.

The Well Ordered Property and the Minimum Property combine
as follows. If n € N then

n” is the smallest of all the elements that are larger than n.

In other words,

if n <m € N then nt < m.

For example, 1 < 5 so that 1T = 2 < 5; 12 < 14 so that 12% < 14;
and 121 < 122 so that 1217 < 122.

Another example is as follows. We will argue in this chapter that
the set of cardinals is a well ordered set. A complete justification is
well beyond the scope of this book. The framed inequality on page
161 shows us that

Ng < o,

So where is the successor R to Ro? The best we can do at this time
is to say that
Ro < NS’ < QRO

Furthermore, R} # Ro + 1 = R since, as must be apparent, Ry #
NO = Ro + 1.

With these properties in mind let us abstract the notion of a
well ordered set.

Definition 5.1.1 Let A be any set. We say that A is a well ordered
set if it satisfies the following two properties.

1. A satisfies the Trichotomy Property. That is, given z,y € A
then z and y satisfy exactly one of the following options.

r<y,y<z,0rT=4y.
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2. A satisfies the Minimum Property. That is, each subset of A
contains a unique least element. Equivalently, to each element
T € A there is a unique element z* € A such that

ify€e Aandifz <y thenzt <y.
We call % the successor of z.

Notice that the element 2+ # x + 1 since we do not know if 1 is
in A or if there is a way to add the elements of A.

Under this definition N is a well ordered set. We have already
discussed that N satisfies the Trichotomy Property, and that each
element n € N possesses a successor element n* =n + 1.

We can also show that N satisfies the Minimum Property. Each
subset of N has a least element found as follows. Let X C N and
assume that X # (. If 0 € X then we are done. 0 is the small-
est element of N. Otherwise, test 1 € X. If it is then it is the
smallest element of X. Continue in this way, taking 2 and then 3,
and on inductively. By choosing the natural numbers in this way
0,1,2,3,... we will eventually find an element of X (since X is
nonempty) and this will be the smallest element of X. Anything
smaller has been ruled out by the way we chose 0,1,2,.... Thus N
satisfies the Minimum Property.

Given a set A = {zg,21,...,2Z,} we can write down a well or-
dering on the elements of A by requiring that

o< < ... <2y,

Notice that every element z # x,, € A has a successor z* € A. For
example,
T3 =z, =¥ =19

The successor z;} to z, does not exist since
{reAjz, <z}

is empty. Moreover, it is improper to say that 7 = z,.., in A since
Zny1 18 not an element of A.
We can make {z,z2,23} a well ordered set if we define

To < T3 < ZI7.
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Notice the peculiar order of the subscripts when compared with the

ordering of the z’s. The order of the subscripts does not follow

the ordering of the elements. It is the order of the elements that

matters, not how we name them. Observe that z{ does not exist.
Partially order the pages of this book by the rule

x < y if page y of the book follows page z.

You should try to convince yourself that this ordering makes the
pages in this book a well ordered set. If z is the last page in the
book then z* does not exist since there is no page following the last
page of the book.

Convince yourself that the subset ordering C makes the set

A= {0,{a}, {a,b},{a,b,c}}

a well ordered set.
Order the set

A={{1,2},{2,3}}
using the subset order C. The elements of A are incomparable. That
is, {1,2} ¢ {2,3} and {2,3} ¢ {1,2}. (Read ¢ as not a subset of.)
Because the set A does not satisfy the Trichotomy Property, it is

not well ordered. Write this one down for yourself.
If we use the ordering < of the real numbers then

is not a well ordered set since the set

11
U= ==y
{1)2)3) }

does not contain a minimum element. The following diagram will
help show us why. The line below is the line R* of positive real
numbers. It is not to scale.

¥

W={(),1,

DO
QO =

o
3=
[ ]
[ ]
[ ]

- DO

1
3
|
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+ 1 +
This picture shows us that in A we have 5 = 1,5 =3 and
in general
1 7 1
n+1 n’

1
If we try to choose an element — in X then we have a smaller one
n
1

T Thus X cannot contain a minimum element, something in

;L( that is smaller than any other element of X. Thus A does not
have the Minimum Property.

Moreover, 0 is without a successor 0% in A. To see this, suppose
that 0% exists in A. Then 0% must satisfy

0t =

SRES

1 1
for some n € N. In that case 0 < 1 so that 07 < ———+ 1 by the
n

n
definition of the successor element. But then
1 < l _ot < 1 ,
n+1 n —n+1

a clear contradiction. Thus 0% does not exist in A.

We can construct new well ordered sets from old ones in the fol-
lowing way. For reasons that will become clear later, let us assume
that

wWo

is a symbol not in N. Any element not in N will do. You might
choose o, you might choose O, or you might even choose the symbol
N. We reserve the symbol oo for another purpose. It is traditional
to choose wy.

We then turn the set

N U {wo}
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into a well ordered set by requiring that
n < wo for each n € N.

We can list the elements in this well ordered set as follows.

NU{w} = 0<1<2<3<...<uwp.

A picture of NU {wp} will help.

This is not a picture of the real line. The three dots in the picture
indicate that the values 0, 1,2 continue on indefinitely in the same
manner. The placement of wy indicates that wy is larger than 0,1,
2, and every natural number n: for example,

10
ol0

101" < wy
Even the very large natural numbers are smaller than wy.

Reader Be Warned: We are dealing with an abstract math-
ematical construction. We treat N as a featureless set. Recall how
we constructed the natural numbers. 2 is the collection of all sets
that are equivalent to {z,y}. 2 is not a distance under this con-
struction. 1 < 2 does not mean that 1 and 2 are a distance of 1
unit apart. We have not introduced a means of defining distance
on N. You should not see wy as being infinitely far away. wy is not
a number. It is simply another element in a larger set.

We have added wp in such a way that wg is the unique largest
element in NU {wo}. Furthermore,

there is no element z € NU {wo} such that zt = wo.
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This is not hard to show. Let n € N be any element. Then by
elementary arithmetic n* =n + 1 € N. Thus n* # wo.
For this reason, we say that

wo is the first infinite ordinal

or the first countably infinite ordinal. It is natural to think of wy as
a countable infinity since it is larger than each n € N. We also refer
to wo as a limit ordinal.

Some of you may be having trouble thinking of this element wy.
You are so accustomed to seeing N as a set whose elements are 1 unit
of distance apart that the idea of N as a set without distance makes
you uncomfortable. You think of < as a measure of the distance
between elements. This is not the case.

Think of N this way. Envision a mathematical bag that contains
each of the elements n € N. There is no distance and there is no unit
of measurement. There is just a bag that contains all of the natural
numbers n. You can do this, you know. It has been done on a
smaller scale. Pick up a large dictionary and look at the back of the
book. There is a page of measurements in various units of distance.
Thus we have, on one page, included numbers like 12 inches in 1
foot. Here we squeezed 12 numbers into one place. We also have
1 mile is 5280 feet. We put several thousands of natural numbers
into one page. You might also find 186,000 miles per second if you
looked up the speed of light. These are large numbers that are not
far away. They are within our grasp. Think of our bag of natural
numbers in the same way. They exist as numbers in some kind of
set. Nothing more.

5.2 The Arithmetic of Ordinals

We now have a set NU {wo} that contains a symbol wg that can be
identified with an infinite value. All we had to do was to introduce
a new symbol wy that we defined to be larger than each of the
elements in N. No distance was implied since infinite distance is
undefined. The symbol wy is just that, a symbol. Let us continue
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using this idea of adding a symbol, and thus extend the well ordered
set NU {wo} to a larger well ordered set.

We will choose a symbol to serve as wg in a well ordered set.
We choose for convenience

w0+1

and we place wp + 1 as the maximal element in a new well ordered
set as in the following diagram.

o 1 2 3 wo wo +1

The symbol does not really mean the sum of wy and 1. We have
simply chosen a symbol that we can recognize as the successor wy
of wg. However, we will abuse the notation and read wy + 1 as
omega nought plus one. In this way we have begun an induction
process with which we will construct a new set of ordinals. We have
already introduced two different infinite ordinals, wp,wp + 1, and
there is the promise of many more. Notice that this construction is
in conflict with the adage that we were taught as children: infinity
plus one is infinity. While this adage applies to cardinals, it does
not anticipate the existence of ordinals. We might try bending the
adage somewhat and say that infinity plus one is infinite.

Extend the above construction of ordinals by choosing different
symbols

w0+2,w0+3,...

that we will call ordinals. We make a new well ordered set by
defining a quite natural ordering

0<1<2...<wy<w+1l<wy+2<wr+3<...
of the new set

NU {wo,wo + 1,wo + 2,wp + 3, .. .}.
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A picture will help the reader visualize the ordering.

0 1 wo wo+1 wo+2 wo+3

L] | [ I |

i i ! 1 1 H

In effect we have constructed a sequence of ordinals or infinities. If
we ignore the addition and multiplication of N then the set

{wo,wo + 1,wo + 2,wp + 3, ...}

appears to be no different from N. Another picture will help.

0 1 2 3

[ X N J
SR
wog wo+1l wo+2 wo+3

[ X N ]

L | |

T ¥ |

For all intents and purposes, our new well ordered set is formed by
attaching a copy of N to the right of N.

There is another interesting omission here. Where do we find
the symbol 1 + wyp in this picture? The answer is hard to explain
but easy to read.

1+w0=w0¢w0+1.

This contradicts all of our intuition on addition of numbers. Why
isnt wo +1 = 1 + wy? Common sense tells us that addition is
commutative. The reality of it shows us that our common sense
about numbers cannot be applied meaningfully to infinite ordinals.
An explanation that might satisfy our curiosity and our common
sense lies deep inside the study of well ordered sets. We will not go
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that far. Suffice it to say that this startling unexpected equation is
a property of ordinals and not of numbers.

We need a new element that will act as an element that is larger
than wy + n for each n € N. Since our new well ordered set is
basically formed by putting one copy of N behind another copy of
N, our next choice of a largest element might be chosen as wqy + wy.
This symbol is not in our set. Certainly 2wq is another symbol not
in our set so we will make the identification

2w = wo + wo

and then form the well ordered set
N U {wo,wp + Lwo +2,...} U{2wp}
by requiring that
wo +n < 2w for all n € N.

In our new well ordered set the largest element is 2wq as in the
accompanying picture.

0 1 wo wo+1 wo+2 2wy

| l | | |

L B T 1 1 T

We have constructed another well ordered set. This set is different
from the previous well ordered sets in that it has two limit ordinals
while the previous well ordered sets have just had the one limit
ordinal wy.

wy < 2wo.

Thus there is no element z such that zt = wy or zt = 2wy. Fur-
thermore, , to each element z except the largest element there is an
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element z+. Given the way that we have defined 2t € NU {wo} as
the symbol z + 1, it is natural and mathematically proper to write

x~ = predecessor of

for ordinals . That is, x~ is the unique largest element that is
smaller than x. Hence

z~ = the unique element y such that y + 1 = r.
Under this convenient notation we have
wo=(wo+1)7, wot+tl=(w+2)7, wog+2=(wo+3)".

We must be aware of the fact that not every element x has a pre-
decessor x~. For example, wy and 0~ do not exist. There is no
element y such that y + 1 = 0 or wp. Thus there is no way to define
wo — 1 since wg — 1 would be the ordinal z such that z+ = wq, and
such an ordinal does not exist. In a similar way 2wy — 1 cannot be
defined since there is no ordinal z such that % = 2wg. Therefore, in
general, even though we can add some ordinals and subtract some
ordinals, the subtraction of ordinals cannot be defined on all ordi-
nals. Here is an abstract addition whose associated subtraction is
not defined everywhere.

We have defined the multiplication of at least two ordinals when
we formed 2wy. We will show that division is not defined on all
ordinals. 'To see this, assume to the contrary that there is some
ordinal

1

§w0 =z.
Then

wo =2z

so that wy > z. Consequently, x € N since the only ordinals less
than wp are in N. This implies that

2x € N,
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while we chose wg such that

2r =wo € N.
1
This contradiction shows us that §w0 cannot be defined.

If we place a copy of the well ordered set
NuU {wo,wo +1,wp +2,. }

at its end, we have constructed a new well ordered set that is dif-
ferent from what we started with. That is, we can choose symbols
2wp + n for n € N and we define a new well ordered set.

N U {wo,wo + 1,wo + 2,...} U{2wg,2wp + 1,2wp + 2,...}. (5.1)

Pictorially we have the following set.

YY) wo Wo+1 wo+2 eee 2wy 2wo+1 2wy+2 eee

I | | |

T T i T i

Can you see it? Can you see how we will proceed next? We will
insert a new element 3wy that is larger than all elements in (5.1)
thus creating a new well ordered set whose picture might look like
this.

XX wo wo+1 wg+2 eee 2wyp 2wWg+1 eee 3wo

| | | l | |

T ¥ 1 T T 1

The above picture suggests a chain of limit ordinals that are
integer multiples of wy.

wo < 2wy < 3wy < ...
Given an n € N we would define an ordinal

nwWo
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as follows. Provided that we know (n — 1)wg, we can define the
ordinals

n—Nwf=Mn-Dwo+1, (n—Nw+1"=(Mn-1w+2, ...

as we did above with wg. A picture is given as follows.

eee (n—1wy (n—1wo+1 (n—1wo+2 eee
[ I |

T T ¥

Then we choose a symbol

%)

and define it to be the unique element that is larger than all of the
elements (n—1)wo, (n—1)wo+1, (n—1)wo+2,.... The well ordered
set that we have just defined can be described by the following
picture.

eee (n—1l)wy (m—1lwo+1 (n—1wy+2 eee nuw

| | 1 |

i l T ¥

Then we have indeed defined an unending chain of limit ordinals:
wo < 2wo < 3wg < ... <nwy <....

Thus there is a limit ordinal 100w and one 186, 000wy. Why there

is even a limit ordinal
10101010

Wo
but this is so far out there that we would have trouble imagining
just how large that ordinal is.
We might be tempted to say “and so on” when we read ... but
what does that mean now? Indefinitely? Infinitely? What do these
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words mean. Do we mean that we should repeat the process once
for each n € N, or once for each ordinal < 3wy, or perhaps once
for each ordinal less than 101%°wy? We need a more precise way of
saying “and so on,” and we will see it in the next section.

As long as we have a chain of limit ordinals wy, 2wy, 3wo, ... we
can define a symbol

W2 = wowp

that is larger than each of the limit ordinals nwy with n € N. Picto-
rially we have defined the new well ordered set whose limit ordinals
look like this.

wo ... 2 ... 3wg eee wg

1 | | |

T T T

We have defined w? by placing wq copies of N one right after the
other. The ordinal w? is larger than all limit ordinals of the form
nwo. Even the incredibly large limit ordinal

10101010
wo

is smaller than w3.
Just for the fun of it let’s try to define wj. Let us define

Wi = wi - wo.

Beginning with w? we will define the ordinals w? + n and nwj for
each n € N. The diagram shows us what we have done. It is not to
scale.

Wy 2wy 3wy eee wg 2wg 3wg XX wg

l || | | | |

I T I T T 1 T
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By repeating the same process we will define ordinal powers of
wp as the symbol

wy = wi! - wp for each n € N.

If we start with wo = w} then we can define w? = wp-wo, W§ = wE-wo,

and then w{ = wd - wy. The process continues, defining all of the

powers wj. We have then expanded our collection of limit ordinals
by taking powers of wy and all of their combinations

wo < Wh < Wh < ...
and

10wy < 12102 < 10*w3 + 101 < 2§ +wo < ...

Pictorially we have

wo XX wq eoe wg eoe

If we continue this chain wp, w2, w3, . .. of limit ordinals we arrive
at the much larger limit ordinal

wp® = the smallest ordinal that is larger than all of the ordinals W

This limit ordinal w3® can be pictured as follows.




182 CHAPTER 5. WELL ORDERED SETS

In fact, there is no end to the exponents we can form. We can
even define an ordinal that has infinitely many exponents. Let us
agree that

is the smallest ordinal that is larger than each of the composite pow-

ers w
Wi WOO

wo wg® “o
w0<wO <w0 <w0 < ....

Thus N is part of a larger well ordered set, some of whose picture
we give below.

9 w L0 W0
0 wo Wy wgp® wgp® wq°
[ N J [ L N J [ L N J
l | | | I l
[ i ¥ i 1 1

This picture is not complete since we can extend this well ordered
set by defining

.
“"(.) wa 4

0
wp® <wp® +l<wy® +2<....

It is difficult to explain which well ordered set these ordinals repre-
sent. They are so large that they are larger than every ordinal that
we have discussed so far. Let us just agree that these are large or-
dinals whose existence we had not expected. Keep in mind, reader,
that like any other graph, there are many unlabelled ordinals be-
tween the labelled points in this picture. That is what ... and
e ¢ ¢ should say to you.

And yet, as large as this ordinal is, there is a larger ordinal. To
find it we will have to construct an ordinal in a different way.

Let X be the set of real numbers. It is best if we use a different
symbol like X as it will enhance the discussion. In Theorem 4.3.1
we showed that

card(N) < card(R) = card(X).
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One of the accepted axioms of mathematics is that X can be turned
into a well ordered set. The set X is so large that it contains a copy
of every one of the ordinals we have discussed so far. For example,

L ]
Wil
1, wo, wy

are all (essentially) in X. But none of these ordinals is the largest
element of X.

Let ©; be a symbol not in X and define a new well ordered set
X+ =X U{} by requiring that

z <, foreach z € X.

Then Q; becomes the largest element in X*. We say that

1y = the first uncountable ordinal.

And yet , is not the largest ordinal.

0... wo... wl eee  g° cee 0 O +1

l I | | ]

I T T T I i

Indeed, if we seek the largest ordinal then our search is fruitless.
There is no such object. Ordinals just go on without stopping. If
we think that we have exhausted our chain of ordinals at some value
a, we can always define a new ordinal ¢ < a + 1 and kickstart our
chain. If we have a set of ordinals

g <ay<...

and we think that this is the end of the ordinal process, we can
always choose a new symbol z not on the chain, place it at the end
of the set

a1 <a2<...<z,
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and start the process of constructing ordinals again.

Let us end this section by reintroducing an old friend of ours. Do
you remember the cleaning lady, Mary, in Hilbert’s Infinite Hotel
from page 98?7 She’s the one who cleaned all of the rooms immacu-
lately and was not heard from again. Well, as it happens, she was
found resting quietly in a room outside the Infinite Hotel numbered
wp. Naturally, this is the room for Hotel Staff.

5.3 Cardinals as Ordinals

It is possible to order a set linearly but not well order the set.
For example, the usual ordering of the real numbers R makes R
a linearly ordered set, but not a well ordered one. Linear order
implies that the Trichotomy Property is true of R; however, it does
not imply that R is well ordered. For example, we cannot define

a successor for 3 in R that respects the usual ordering of R. The
+

reason would be that if we have % then there should be no real

number z such that
1 1t
5 <zr< 5 .
Thus there can be no next real number.
Recall that card(A) < card(B) if there is a one-to-one function
f : A — B. This ordering < of cardinals is linear because the

given cardinals satisfy the Trichotomy Property. That is,

given any two cardinals o and 3 either
a<pB, B<a, or a=0.

This allows us to make the following conclusion.

Given two cardinals o and 4 then
a<fPand f<a=a=0.
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It is natural to ask if this linear ordering of cardinals is a well
ordering of cardinals. For example, if we want to know the com-
parative sizes of card(P3(N)) and 2°*4(PM) then we can be assured
that exactly one of the three conditions

card(P3(N)) < 2erd(PMN)) - 9eard(P(N))  card(P3(N)),
or card(P?(N)) = 2c2rd(P(N))

applies to the two cardinals. Now that we know that the cardi-
nals are linearly ordered, we make the next leap of the mathemat-
ical imagination. The reason that we have taken such care with
the ordinals and their arithmetic is the following deep result from
mathematics that links ordinals with cardinals.

Theorem 5.3.1 Given a cardinal X there is a successor cardinal
W+, That is, the set of cardinals is well ordered.

The theorem is deep and its proof is far too complex for us to
present in this book, so let us just accept the truth of it.

Thus there is a cardinal Rf and one (2%)*. Since
Ny < QRO

and since the successor element z%t is the smallest element that is
larger than z, we can say that

RE < 2%,

but we do not know if this inequality is proper or an equation.
A more familiar inequality comes from Theorem 4.3.1:

Ry < card(R).

Since the successor element XY is smaller than every element that
is larger than Ny, we can write that

RY < card(R).

Questions about this inequality turn out to be some of the deep-
est questions in mathematics. We will address this predicament
presently.
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The following notation will be used for the most often referred
to cardinals:

Ry = card(N) (read as aleph nought),
R; = R is the successor of Ry (read as aleph one),

R, = R{ is the successor of ¥,

and so on.
Inasmuch as
Ry = card(N) < card(R),

we can write that
Nl < card(IR)

The reasoning here is that the successor ¥, = NE; is the smallest
element that is larger than No. We have thus arrived at our first
mysterious property of cardinals. Given that ¥; < card(R) it is
natural to ask if 8; = card(R). This question is so subtle a mat-
ter that the mathematician who answered it, Paul J. Cohen, was
honored with the highest award in mathematics: the Field’s Medal.

Theorem 5.3.2 [Paul J. Cohen] We cannot prove and we cannot
disprove that X, = card(R).

We say that the condition ®; = card(R) is independent of the
ZFC Azioms of Set Theory. That is, it is unattainable as a theorem
in regular mathematics. That statement needs some explanation.
I suppose you have had experience in plane geometry, so we start
there. The geometry we studied in high school was based on ten
elementary truths, or axioms and propositions, given by a Greek
mathematician Euclid (circa 300 BC). Euclid started with these
ten statements and then proceeded to develop all of geometry from
them. The truth of most of those statements is quite transparent.
For example, Euclid starts by assuming that the whole is the sum
of its parts. Obviously, this is true. He also assumes that all right
angles have equal measure. Again, obviously true. There are eight
others that we will not state because they do not impact on our
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discussion. The point is, from ten clearly true statements Euclid
could derive all of the mathematics in the geometry you studied in
school. Thus, by starting with true statements about points, lines,
and triangles and then extending his thoughts using Aristotelian
Logic, (the logic of true and false statements), Euclid was able to
develop a mathematics that was free of any mistakes or miscon-
ceptions. Euclid’s method, now called the ariomatic method, was
so compelling that mathematicians in every century over the last
2300 years have made use of it. We all begin our work with a few
basic statements and proceed from there to demonstrate universal
truths. These truths are not personal opinion. They are statements
that would be true no matter who was reading them. These are
truths that can be shared with advanced civilizations anywhere on
Earth and, should the need arise, with extraplanetary civilizations.
Assuming that a group of people is sufficiently advanced, assum-
ing they know enough mathematics, we would share with them the
same theorems of plane geometry. That is the power and the na-
ture of the axiomatic method. Try to make a similiar statement
concerning the literature, art, or religion of two different civiliza-
tions on Earth. That would not be possible. Mathematics took on
the axiomatic method with vigor in the early part of the twentieth
century. In this time every area of mathematics from algebra to cal-
culus tried to find those few elementary truths that could be used as
a springboard with Aristotelian Logic to produce universal truths
about that area of mathematics. Sometime in the 1920s a math-
ematician came up with a few statements that all mathematicians
could agree on as obviously true, and that most agreed were simple
statements. These axioms today are called the the ZFC Azxioms, or
Zermelo-Franklin-Choice Azioms. These are axioms about sets and
they are the basis for most modern mathematics. For example, one
of the statements is that there do not exist sets A and B that are
elements of each other: that is,

There do not exist sets A and B such that A€ B and B € A.

A moment’s thought might convince you that this statement is true,
and that its negation is:

There are two sets A and B such that A € B and B € A.
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The point behind this is that by starting with elementary statements
about sets we are able to prove advanced ideas in such areas as linear
algebra, calculus, and trigonometry. All of mathematics assumes set
theory so all of mathematics depends upon axioms.

What P. J. Cohen proved was that there is at least one state-
ment about mathematics that cannot be proved or disproved with
the ZFC Axioms. No amount of logic and mathematics will allow
us to start with the axioms of set theory and then end up with
R, = card(R). Mathematics, as large as it might seem right now,
is too small to include ®; = card(R) as a theorem. Now there is a
statement. Why would you ever think that mathematics is small?
And yet here we have an example of its limitations.

This is probably the first time you have seen such a statement.
Think of this as a Catch-22 in your algebra course. Your teacher
asks you to show that z = y for some numbers z and y, and you
tell your professor, “I cannot prove that £ = y but I cannot prove
that = # y.” Your professor would certainly give you a high mark
if x = X; and y = card(R).

Let’s examine what it means to be independent of the axioms
of set theory. There are five axioms that define what set theory is.
From these axioms almost all of modern mathematics can be proved
as theorems. This occurs in exactly the same way you learned it in
your high school geometry course. You begin with five axioms or
postulates (these from Euclid) from which you can prove all of the
theorems in elementary geometry. Mathematics is handled in the
same way. Most of the mathematics we meet in elementary courses
can be proved from the axioms of set theory. Thus the ZFC Ax-
ioms of Set Theory become the foundation of modern mathematics.
With such a beginning, mathematicians are sure that modern math-
ematics is on the same firm foundation that Euclid’s plane geometry
enjoys.

Before Cohen’s Theorem 5.3.2, mathematicians did not know of
a simply stated idea that was independent of the ZFC Axioms of
Set Theory. Indeed, these Axioms were relatively new discoveries
when Cohen proved his theorem. It struck the mathematicians of
the day as quite strange. It is still thought to be curious that some
statement about mathematics is beyond mathematical proof or dis-
proof. Before Cohen’s Theorem, the powerful mathematician David
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Hilbert (remember him of Infinite Hotel fame) had suggested that
mathematicians should start looking for a program or computer
of sorts that would produce all of mathematics if it was allowed
to run long enough. Cohen’s Theorem 5.3.2 proved that Hilbert’s
suggestion could not be realized. There can be no program or com-
puter that produces all of mathematics even if it was allowed to
run in some thought experiment. Some statements of mathematics
are simply beyond the reach of mathematical proof. They can be
stated or assumed but not proved.

The cold fact is that the axioms of set theory are simply not
strong enough to prove every statement about mathematics. Fur-
thermore, no collection of mathematical axioms will allow us to
prove every statement about mathematics. The only way to use a
statement like ®; = card(R) is to include it as an aziom. However,
once that inclusion is made we create a larger and different math-
ematics that properly contains the one we grew up with. This new
mathematics will contain all of the work you did in your high school
mathematics class, including algebra and geometry, and it will con-
tain a new and perhaps strange mathematical statement. Before
the end of this discussion we will encounter a simple statement that
is true in the mathematics that assumes that ®; = card(R) but not
in a smaller mathematics.

Georg Cantor did not know of Cohen’s Theorem (since Can-
tor lived 80 years before Cohen’s Theorem was published), so he
accepted N; = card(R) as an axiom or hypothesis.

The Continuum Hypothesis: Assume that R; = card(R).

Because the Continuum Hypothesis is independent of our usual
mathematics, it can be used as an axiom with which we can con-
struct an entirely new mathematics.

CH

CH is the usual mathematics together with the Continuum Hypoth-
esis used as an axiom. Many beautiful theorems are proved in CH,
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or by assuming the Continuum Hypothesis. The mathematics you
learned in high school is not strong enough to prove all of the the-
orems in CH.

On the other hand, because we cannot disprove the Continuum
Hypothesis, we can include its logical negation, R, < card(R), as an
axiom in mathematics, thus constructing a new mathematics:

notCH.

While many theorems are proved in notCH these theorems cannot
be compared to the theorems in CH. Theorems in CH may seem
to contradict some theorems in notCH, but this is an inaccurate
comparison because

CH and notCH exist as two different mathematical universes.

We cannot compare the theorems from CH and notCH anymore
than we could compare recipes for bread and cake and claim that
one is right and one is wrong. Each has its own uses and each has
its own role on the dinner table. In the same way the theorems of
CH have their place in mathematics, the theorems in not CH have
their place in mathematics, and the two places cannot be compared.

This must seem odd. We were all led to believe that there was
only one mathematics. This reaction is not unusual. The math-
ematics we learned in high school is contained in both CH and
notCH. No one except the experts ever has the opportunity to
distinguish between the mathematics in CH and the mathematics
in notCH. In picture (5.2), CH and notCH are the regions that
contain the shaded region called Standard Mathematics. From this
picture we can imply certain facts about Mathematics. Here is what
this means to you.
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All of Mathematics (5.2)

CH

Standard
Mathematics

notCH
o N1 # card(R)

Other Mathematics

1. CH and notCH overlap in the Standard Mathematics.
2. CH and notCH are different.
3. Neither CH nor notCH equals the Standard Mathematics.

4. Together CH and notCH do not encompass All of Mathe-
matics.

Moreover, the diagram suggests that there are otherregions of math-
ematics out there to be discovered. This is indeed the truth of the
matter.

In the following discussion I will attempt to show you a mathe-
matical fact that changes when viewed as a theorem in CH and in
notCH.
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Recall that R, = N(‘; is the successor to Ny, and that R, denotes
the successor of N;.

Ry = Nf .

The next question we will consider is: How do RNg, N;, card(R), and
Ny compare? It turns out that these relationships depend on the
mathematics we choose to work in, CH or notCH. We have shown
that

N; < card(R).

Using this with the already established Theorems 4.3.1 and 4.4.2,
we find that there is a chain of cardinals

Ny < ¥; < card(R).

To fine tune these inequalities we would use the Continuum Hy-
pothesis or its logical negation. The next two boxes show us how
these inequalities change in CH and in notCH. Note the different
placement of N; and R,.

In CH,

Ny < |®) = card(R)| < Rq,

while in notCH,

Ro < Ry < [N < card(R)]

This is real evidence that CH and notCH are different mathe-
matical systems.
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Let us examine that thought. The cardinality of R, essen-
tially the number of elements in R, has different values in CH
and notCH. This infinite number card(R) has two different val-
ues, depending upon which mathematics you choose to work in.
The difference between CH and notCH could not be more plain.

card(R) = ¥, in CH,
card(R) > R, in notCH.

How is that possible? Does the number of elements in R change as
it passes between CH and notCH? Are there fewer real numbers
in CH than there are in notCH? Of course, the set R does not
change when we work in CH or notCH. If z is a real number in
the mathematics CH then z is a real number in the mathematics
notCH. The reason for this is that R exists in the mathematics
you learned in high school. The real numbers will be the same no
matter which mathematical structure you work in. So then how
does card(R) change values between CH and notCH? The answer
is that in notCH we add a cardinal between Xy and card(R). When
we form CH we are not allowing for any other cardinals between
Ry and card(R). CH tolerates the inequalities

Ny < Ry = card(R) < Rs.

When we list the cardinals in notCH we allow for the existence
of a cardinal R; such that

Ny < N < Ny < card(IR).

Since Ny = Nf there will not be cardinals strictly between ¥; and
N,. Thus in notCH we have the chain of inequalities

No < Nl < NQ < card(IR).

It follows that the ways we count in CH and notCH are different.
The cardinals (numbers) that we use change values when we pass
from the mathematical system CH to notCH.

Now consider the cardinal 2%¢. Under the ZFC Axioms of Set
Theory we can write down that

Ro < R, < 2o,
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Thus in CH we have

N0<N1=2R°<N2

while in notCH we have

No < N <N2S2R°.

Once again we see that the size of a cardinal depends upon the
mathematical system in which we are working.

Let me impart one final item. A more general version of the
Continuum Hypothesis is

The Generalized Continuum Hypothesis (GCH):

Assume that Rt = 2% for each cardinal X.

That is, given a cardinal X assume that 2% is the next cardinal.
The statement GCH assures us that all cardinals come in essentially
one form, that of a power of 2.

Picture (5.3) illustrates the containing relationship between the
mathematical system GCH that results from the addition of the
Generalized Continuum Hypothesis into the Standard Mathematics
ZFC. Picture (5.3) suggests that ZFC, the Standard Mathematics,
is properly contained in the mathematical system GCH formed by
adding GCH to the ZFC Axioms of Set Theory, and that CH prop-
erly contains GCH. Thus we have found a mathematics properly
between CH and ZFC. There is every reason to expect that there is
an infinite chain of mathematical systems containing ZFC. Indeed,
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All of Mathematics (5.3)

CH

GCH
Other

Mathematics

ZFC

we leave it to the reader to find an infinite chain of mathematical
systems
ZFC C...Cc MS, c MS, c CH

between ZFC and CH. Think of the Continuum Hypothesis and
remember that we do not know if Rt = 2® for cardinals ®. Just
find these new mathematical systems. There is no reason to show
that these chains behave precisely like the picture or your intuition
suggests.

As we stated earlier, according to the Generalized Continuum
Hypothesis each cardinal except Ny is a power of 2. In this way
cardinals are not like numbers at all. After all, not every number is
a power of 2. Thus under the Generalized Continuum Hypothesis
each of the cardinals Ng, X}, Ny, .. .is a power of 2.

NO, Nl = 2R07 N? = 22&07 N3 = 222R07
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CH

MS,

MS,

GCH

There is one easy question that I will leave the reader with in
this chapter. We know that the Continuum Hypothesis cannot be
proved using the ZFC Axioms of Set Theory. There are also math-
ematical statements that cannot be proved within CH. The Gen-
eralized Continuum Hypothesis is one such statement. Moreover,
there is a true statement that cannot be proved within GCH. It
exists but we cannot state it here. As we indicated in picture (5.4)
there is a chain

GCHcC...cMS,CcMS, cCH

of mathematical systems. Each system MS,, is associated with a
statement S, that cannot be proved within MS,,. The question is
this. Can we find one statement, say S, that cannot be proved in
any of these systems MS,? That is, can we find one statement,
say S, that cannot be proved by MS;, that cannot be proved by
MS,, that cannot be proved by MS3;, and so on? I will not answer
this because the question is more philosophical than mathematical.
Test your answer when you find it. Feel free to get emotional about
it. Do you really think that your statement is beyond the proof of
all of these mathematical systems?
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5.4 Magnitude versus Cardinality

As with every discussion about the infinite, these ideas take place
in a mathematical thought experiment or a Platonic Universe. So
if these ideas do not agree with what you see around you, good!
There is nothing infinite about this world around us. Let us expand
on that for a little bit.

When you were introduced to the infinite as a child (i.e., before
you read this book), you thought that infinity was an infinite dis-
tance from us. Somehow, infinity was a place that we could reach if
we could move infinitely far. This is not possible within our phys-
ical universe. In our universe we have only a finite distance that
we can travel before we come upon our starting point again. There
are two infinities in that idea that have to be addressed, namely,
infinite distance and infinite time.

The universe, as far as is known at the time of this printing, is a
lumpy sphere having four dimensions. Its beginning can be pinned
down to within such a small fraction 10733 of a second that for our
purposes we can assume that scientists have glimpsed the origin of
the universe. Of course, this is not really the universe’s origin, and
perhaps that origin is beyond the scope of scientific observation,
but it gives us a beginning, a starting point to talk about age in
years. The beginning of our universe seems to have occurred some
20 billion years ago. It might be older or younger than that but
we can assume with scientific certainty that the universe is no more
than 30 billion years old. Moreover, outside this framework of time,
it is relatively certain that time as we know it does not exist. Time
seems to be peculiar to our universe. Thus there can be no infinite
time prior to us. Time has not existed forever.

The expansion of the universe probably occurred in fits and
starts: that is, the expansion of the universe was not smooth and
not of uniform speed. But it has a maximum value, the speed of
light. Given the age of the universe and a finite rate of expansion,
it is clear that the universe is a bounded place, say, smaller than
3 x 10'% x ¢, ¢ being the speed of light. This gives us a bounded
universe, so that distances in the universe do not appear to be in-
finite. Before anyone starts to suggest that we can reach the edge
of the universe, let me bring you back to reality. There is no edge
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to the universe. If you start out in a direction and hope to travel
in a straight line you are thwarted by gravitational considerations
since gravity warps space and time. Furthermore, you are on a four
dimensional lumpy spheroid, not a three dimensional object. Thus
your travels are necessarily distorted by the fourth dimension. For
instance, suppose you are a point living on a sphere. You live in
three dimensions but you only experience two. As you travel around
the bounded spherical universe of yours, you are impressed with the
fact that you can never reach the edge of the universe. And yet you
know the universe is bounded. Try it on an orange and see if that
helps you visualize the point moving about and seeking the edge of
its universe.

Thus we do not find our universal edge. It bends away from us
in the fourth dimension. In fact, cosmologists, people who study
the universe, suspect that our universe exists as an 11 dimensional
object. It would then be impossible for us to know today where
that bending or curvature in the universe might be.

But just because the point’s universe has no edge does that mean
that the distances in the universe extend to the infinite? Are there
two points in our universe that are infinitely far apart? Of course
not. The distances might be large, perhaps even larger than our
imagined point ever imagined, but the distances on the sphere are
quite finite. In the same way but in a higher number of dimen-
sions our universe does not possess two points that have an infinite
distance between them. Infinite distances it seems must somehow
extend beyond the universe. What then do we mean by infinite
distances? This is the difference between cardinals and the infinite
distances you may have become familiar with. Infinite distances do
not exist while our notion of a cardinal does exist.

A cardinal is in a very loose sense a count of the number of
elements in a set. As we saw there are many cardinals including
the first infinite cardinal card(N) and the cardinality of the reals
card(R). (If this notation makes little or no sense to you, then
please read the previous chapters in this book.) We can continually
add elements to these sets to form sets with larger cardinality. For
example, if we let P(X) denote the power set of X, or equivalently
P(X) is the set of subsets of the set X, then

N, P(N),P(P(N)),...
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is a list of sets with different cardinalities. Since we can always
take the power set of a set, this list is infinite. Thus if we count the
number of elements in a set carefully, we find that there are infinitely
many infinite cardinals. These cardinals do not measure distance.
They do not measure how far it is across a set. These cardinalities
simply measure how many elements are in the set using one-to-one
and onto functions.

The infinite ideas that you have seen in life are more closely
related to distance because their size is determined relative to the
natural numbers, N. Mathematics does not recognize distance as
an infinite number. That symbol you may have seen, the lazy eight
00, 1s not defined as a number. That’s right. No matter what you

may have heard oo is not a number. The division = is not infinity,

either. It is undefined, meaning that it holds no meaning at all. The
1 . .

symbol = makes no mathematical sense at all. We do not even give

it a special symbol or name. In fact, except for books like this one,
you are not likely to see a professional mathematician write down
%. That’s enough of that. My fingers hurt when I type % Ouch, I
did it again.

Now, to speak about infinite quantities mathematicians have
found that the limit is the only notion that allows us to describe
and manipulate infinite or unbounded quantities in a consistent and
mathematically precise manner. Let f(z) be a function that takes
real numbers z to real numbers f(z). This is where that high school
education comes in handy. Suppose we want to know about the size
of f(z) as z gets closer to some number, say, a. We write

lim, ., f(z) =L

provided that f(z) gets closer to L as z gets closer to a. Don’t
let the notation scare you. This is the smallest bit of notation we
can use to get the idea across to the reader. It has been in use for
150 years now and shows no sign of being replaced by something
else. What do we mean by z gets closer to a? What we mean
is that z is allowed to take on values that are physically closer to
a. That is, the difference between them (i.e., the larger minus the
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smaller), is allowed to become very small or close to 0. For example,
a calculator will show you that 2z + 3 gets close to 5 as x gets close
to 1. I won’t bore you with the table of numbers. In our notation

lin}2x+3=5.

We are more interested in limits where L is not finite. We say that
f(z) has an infinite limit at a if for each natural number N there
is a small neighborhood of a, call it U, such that

f(z) > Nforall z € U,

and we write
lim f(z) = o0

r—a

1
in this case. For example, if we consider the function f(z) = 2 at
0 then as we said above f(0) is undefined. (Notice how I managed

to say that without writing —. Ouch!) But we can take the limit as
x gets close to 0 to see that

The table shows us why. We take values of z that are closer and
closer to 0, but do not equal 0. The sequence of resulting values
f(z) gets larger.

1

z| fz) = -

1 10
.01 100
.001 1000

If we are given a small value for z, a number close to 0, then the

number — seems to get very large. If we are given-a natural number
x

N we can find a number ﬁ = z very close to 0 such that f(z) >
N. Thus it would seem that linég = o0. Observe how the limit

1 .
replaces the undefined term o (Thought I'd say ouch, didn’t you?)
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This is an infinity associated with magnitude. This is an infinity
that requires us to think of how tall or how long or how much of
something there is. For this reason it would seem that oo has little
to do with the infinite cardinals Rg, R, 2%°.

The calculus also presents us with some other paradoxes asso-
ciated with the infinite. Consider the fact that if we add three
numbers together then we can push them around as follows.

z+(y+z2) = (z+y)+=2
r+y = y+z

Thus
1-1+41=(1-1)+1=0+1=1

and
1-141=141-1=(141)-1=2-1=1.

We arrive at 1 in two different ways. If the number of terms is
infinite, problems arise. Consider the sum

1-14+1-141—....

Such infinite sums have to be treated with care. Just because we
have written it down does not mean it equals a number! For ex-
ample, if this sum exists then you might say that the sum should
support any use of parentheses. However, , when we try the follow-
ing two groupings of the sum we get different values. By grouping
using parentheses we see that

l-14+1-141-14... = 1-D+(1-D+10-1D+...
0+0+0+...
= 0,

and by changing the order of terms and then grouping we get

1-141-141-14... = 1+1-141-14+1-1+...
1+01-D)+(1-1D+(1-1)...
= 1+0+0+...

= 1
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So which is the answer, 0 or 1?7 One august mathematician in the
eighteenth century suggested that since 0 and 1 were answers that

we could also include their average % (Now that fraction didn’t

hurt a bit.) Today we say that the symbols
1-14+1-1+1-141—...

do not converge to a number. The sum is just as undefined as the
unmentionable fraction o (I think I need an aspirin for this pain.)

Another sum that has problems with the infinite is a geometric
sum. The reader may have heard that

1

l4z+22+...=
11—z

(5.5)

1
for numbers x between —1 and 1. Thus, if we let z = = in (5.5)

2
then
1 1 1 1
1+-+ 5 +=+

T I e

as we will prove in Chapter 6. However, as soon as we try the
boundary value z = —1 in (5.5), we arrive at a familiar set of
symbols that do not mean anything.

1 1
1-141-14...= ——= = —.
Tt T T2
Maybe that august individual was not so far from the mark.
The sum (5.5) gives an absurd value when we try to use values
beyond the boundaries set by mathematics. With z = 2 in (5.5) we
have our mathematically sensitive mind injured by

1+2+224+28 4+, = —— =—1.

That must have hurt you as much as me.

So what is the message here? The message is that we cannot
talk about infinite quantities except in the presense of limits. If we
are using infinite sums then we must be very careful to work within
what is called the radius of convergence. This is the neighborhood
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in which the sum makes sense. If we take values z outside this
neighborhood, the result will be mathematical nonsense. For that
reason we say that

l+z4+22+2°+...

is only defined for z’s between —1 and 1, and nowhere else.



Chapter 6

Inductions and Numbers

Let us consider the well ordered set N from a new perspective. We
used two properties of N to define well ordered sets. They were the
Trichotomy Property and the Minimum Property. It is accepted by
mathematicians that these properties together with the Principle
of Mathematical Induction will give us all a common intellectual
picture of the natural numbers. At this stage of intellectual de-
velopment, the professionals agree that everyone who reads these
statements will envision the same set of natural numbers that are
right this minute dancing in your head. Furthermore, these prin-
ciples can be extended to well ordered sets to give us a new and
powerful tool or argument about well ordered sets. That new tool
is called Transfinite Induction. Transfinite Induction is to well or-
dered sets what Mathematical Induction is to the natural numbers.

6.1 Mathematical Induction

We begin with a discussion of the Principle of Mathematical Induc-
tion or more briefly Mathematical Induction. Intuitively, Mathe-
matical Induction allows us to make a statement for all of the natu-
ral numbers by knowing only that the statement holds at 0 and then
the statement holds at n + 1 if it holds at n. For instance, suppose
you are playing a board game (a thought experiment) whose object
is to move through all of the playing spaces numbered 0,1,2,3,.. ..
You move from space to space by rolling a die whose every face has
a single black spot e on it. You are on space 0. Next, to get from

205
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space 100 to 101 you roll the die and move one space. In general, to
get from the space numbered n to the space numbered n+ 1 you roll
the die and move one space. This is how Mathematical Induction
works. You have a starting place and you are told how to get from
place to place or, more precisely, from natural number to natural
number. A more mathematical discussion follows.

The Principle of Mathematical Induction: Suppose we are
given a subset X C N. Then X = N if X satisfies the property

0€ X and given k € X then k+1 € X.

You may have encountered this principle in your Algebra III
course in high school, although you may not have given it a name.
The Principle of Mathematical Induction tells us that if we have a
process P that can be done in the first place, (we say that P(0) is
true), and if we can show how to proceed from some statement P(k)
to the statement position P(k + 1), then we can infer that P(n) is
true for each n € N. That is one efficient way to prove something
for infinitely many natural numbers. Please allow me to use ladders
with steps instead of rungs.

Here is an illustration of how Mathematical Induction works.
Suppose that we have an infinite ladder whose first step is numbered
with 0.

step 0 Y step k step k+1 Y

We are on the first step of the ladder, and we have a set of instruc-
tions that shows us how to get from one step on the ladder to the
next in a general way. These directions will not be of the form

Move from step 0 to step 1 and then to step 2.
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Such directions will work for a finite ladder, one having, say, 5 steps,
but it fails to help us climb a ladder with an infinite number of steps.
Rather, the directions should read like this.

If you are on some step then here is how to get to the next step.

This set of directions ensures us that we will be able to traverse
every step of this infinite ladder. In elementary mathematics, these
instructions are usually a set of equations. In computer program-
ming, this process is the set of instructions in a loop without a stop
command. The only way to find some kind of intuition surrounding
Mathematical Induction is to read several examples.

Example 6.1.1 The following algorithm writes all of the natural
numbers n > 0.

1. Let k= 1.

2. Write k.

3. Increase k to k+ 1.
4. Go to step 2.

We will prove that the claim of this algorithm is true using
Mathematical Induction.

The Initial Step is to check that 1 is written on the first pass.
One pass through this algorithm, that is, one reading of lines 1
through 4, confirms that step 2 will write 1 in step 2. Then k is
increased from 1 to 2.

The Induction Hypothesis: Assume that k is written on the k-th
pass through the algorithm.

The next step is the Induction Step. Assuming the Induction
Hypothesis we must show that £+ 1 is written on the (k+ 1)st pass.
So assume that the Induction Hypothesis is true. Assume that &
is written on the kth pass. Step 3 of the algorithm increases k to
k + 1 so that on the next pass (i.e., on pass number &k + 1) step 2 of
the algorithm writes £ + 1. This is what we had to prove.

Then by Mathematical Induction we conclude that for each nat-
ural number n > 0, the algorithm writes n on its nth pass.

Notice what we did. We predicted the behavior of the algorithm
through all of its passes knowing only how it behaves at some point
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k. While physical restrictions limit a computer to print only finitely
many integers using this algorithm, Mathematical Induction allows
us to know the behavior of this algorithm through any number of
passes. Thus no matter how fast or powerful computers get we will
know precisely what this algorithm does on any pass.

Here is an example of how Mathematical Induction can replace
hand waving in a mathematical discussion. Recall that on page 96
we watched a gentleman take a curious walk across the lobby in

Hilbert’s Infinite Hotel. He moved first one meter and then % a

1
meter and in general on his nth step he moved Fmeters. We will

use Mathematical Induction to show that when he has completed

his nth step then he is - meters from the end of his walk.

2n-
Example 6.1.2 Begin with the open interval (0,2) of numbers
properly between 0 and 2. Mark the midpoint of the open interval.
The segment yet to be crossed (i.e., the one bordering on 2) has
length 1 as in the picture.

0 midpoint 2

| | 1

Take the interval boardering on 2 and find its midpoint. Continue
this process inductively. That is, if we have an open interval bor-
dering on 2, then find its midpoint and find the half that borders on
2. For example, in the second step we will find the midpoint of the
chosen interval and choose the half bordering on 2 as in the picture.

0 1 midpoint 2

I-_

N[ b

-
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1
The segment yet to be crossed has length R
We will prove using Mathematical Induction that:
1
In step n + 1 the length of the chosen segment is on
Initial Step: We are starting with 1 = 0 —1+— 1. On the 1st step
the chosen segment has length 1 =0+ 1 = ok Thus our formula

for length works for n = 0.
Induction Hypothesis: We will assume that in the (k + 1)st step

of our process the segment chosen has length .

Induction Step: By the Induction Hypothesis, in the (k + 1)st
step of the man’s walk he chooses a segment of length ;—k In the
next step, the (k + 2)nd step, we take half of the given segment.

. 11 1
The result is a segment of length 2ok = 15‘75 Thus the segment
in step k +2 = (k+ 1) + 1 has length SCTSIR This is what we had

to prove.
We conclude by Mathematical Induction that the segment in

1
step n + 1 has length o for each n € N.

1
Example 6.1.3 Another identity using 5 is the subject of the next
induction argument. We will show that

1 1 1
is true for each n € N.
Proof: Initial Step: In step O check that

1 1
rp Tty
Induction Hypothesis: Assume that we have shown that
1 1 1
9 =144+ —
R T

for some k € N. (This is true since we have proved it true for at
least the value k = 0.)
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Induction Step: We must show that

o 1 _ .1 11
_2(—k+'ﬂ—‘ +_2'+"'+2_k+m.

We begin by grouping the first k£ terms in the sum.

1 1 1 1 ~ [ 1 1 1
+2+“'+2—k+m— +§+"'+2—k +W.

By the Induction Hypothesis and a small bit of algebra we can write

- 1 L _ [, 1 1
2Tt ) T T \PT %) T
2 1
= (2 o 2(k+1)) + olk+1)
_ 1
T 7T ok+)

after a little bit of arithmetic. This shows us that

I ] 1 4 1
B VR ST
which completes the Inductive Step.
We conclude by Mathematical Induction that
1 1 1

R e S B
= lto ot

for each n € N. This completes the proof.
We can use the above example to prove that the curious man
in the lobby of Hilbert’s Infinite Hotel covers 2 meters when he has

finished walking all of the steps possible. On the man’s (n + 1)st
step he has travelled

TILITRRP.
2 on

meters. The distance between 2 and this intermediate position is

1 1
2— (144 +=—].
( 2+ +2n)
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By the above example this can be simplified to

1 1
—(2-=)==.
2 ( 2n) 2"

Thus his final position z and 2 must be separated by less than

2—171 for each n. That is,

1
Then 1
lim2——<x<2.
n—oo on
However,
1
lim2—-—=2-0=2
nl—»rgo on 0
so that

2= lim2—21—n§:c§2.

n—oo

Thus his final position z must be equal to 2.

An application of Mathematical Induction will show that the
cleaning lady who cleaned all of the rooms in Hilbert’s Infinite Hotel
does indeed clean each of the rooms in a total of 2 hours.

Example 6.1.4 Recall that there is a cleaning lady Mary who
cleans room 1 in 1 hour, and cleans out each successive room in
Hilbert’s Infinite Hotel in half the time it takes to clean the previ-
ous room. That is, if Mary takes z hours to clean room n then she

1
takes =z hours to clean room n+ 1. We will show that Mary cleans
all of the rooms in Hilbert’s Infinite Hotel and that she cleans room
n in = hours.

Initial Step: Mary cleans room 1. I know because I stayed there.
The room was spotless. By design she takes only 1 hour to clean
rocom 1.

Induction Hypothesis: Assume that Mary has cleaned a room,

say, room k, in T hours.
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Induction Step: Mary has cleaned room k by the induction pro-
cess. She moves to room k + 1 and proceeds to clean it. Thus room
k + 1 is cleaned. She cleans room k + 1 in half the tlime it took to
clean the previous room k. Then it takes 25k—T = 5% hours. This
is what we had to prove.

We conclude by Mathematical Induction that Mary cleans all of
the rooms at Hilbert’s Infinite Hotel, and that she cleans room n in

gnt hours. This ends the Mathematical Induction proof.

Let us find the total time it takes Mary to complete her work.
If we reread Example 6.1.4 we see that Mary takes —— hours to

completely clean room n. We conclude then that the time taken for
Mary to clean each of the first n 4+ 1 rooms is

T4 o m
2 22 2n’
According to the previous example

1 1 1 1
It ot e =2 —.
Tt mEt on

It follows that as Mary cleans more rooms the difference between 2
hours and Mary’s working time is

1 1
2—(2-—)=—.
(-5)-7

Thus, in a mathematically precise way, we see that when Mary has
completed her rounds (i.e. when she has cleaned room n + 1 for
all natural numbers n € N) the difference between 2 hours and her

working time is smaller than on for all n > 0. But 0 is the only

1
nonnegative number smaller than the fractions on for all n > 0. We

conclude that after Mary has completed her cleaning duties, she has
worked exactly 2 hours. That is, Mary requires exactly 2 hours to
clean all of these rooms.

Here is another example that uses the number 2 in a clever way.
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Example 6.1.5 We will show that
1+2+224... 42" =2""" _1foreach n € N.

Initial Step: 1 = 2° so that
20 - 20+1 ~1=1

b

providing us with the Initial Step.
Induction Hypothesis: We assume that we have proved that

1424224 ... 4928 =251 _ 1 for some k € N.

(Again, we did so for k = 0.)
Inductive Step: We must show that

1+2+22+“'+2k+1=2k+2_1)

where k is the integer chosen in the Induction Hypothesis.
A little algebra and the Induction Hypothesis shows us that

1424224 4284251 = (142422 4. 4 2k) 4 2F+1
— 2k+1+2k+1~1
— 2'2k+1_1

Qk+1+1 _ 4

2k+2 _ 1.

This is what we had to prove.
Therefore, by Mathematical Induction, we have proved that

1+42+22+.--4+92"=2"*"!' _ 1 foreach n € N.

Now here is another mathematically imprecise way to justify the
identity given in the above example. Fix n € N and use your old
friend foil to find the product

-1 +2+---+2771 427,
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Do not simplify this expression as that will make our calculations
useless. Then

1424+--42" = 2-1)1+2+---427
_ 21 + 2 + + 27)
~-11 + 2 + + 2m)
_ 2 4+ ... 4 9n 4 o9ntl
Tl -1 -2 — o —2m

= —1+(2-2)+---+ (2" —2") 42"

Therefore
142+ 420 =2

and we have proved the identity in the above example. The reader
might question why this argument is mathematically imprecise. The
answer lies in the way we stacked the powers of 2. In the above
equations we lined up the powers of 2 as follows.

2 + 22 4+ ... 4 20 4 2l
-1 - 2 — 22 — ... — 9on

We then implicitly declared that since this stacking of powers of 2
works for the first 2 powers of 2 it works for all powers of 2. This is
the weakness in the argument. There is no mathematical law that
says that a pattern that occurs twice will occur in all places. There
is no way to imply from the first two places that the stacking will
take place in all places. No way, that is, unless we use the Principle
of Mathematical Induction.

You might be suggesting right now that the pattern is obvious.
We should be able to imply a mathematical truth from the obvious
nature of the pattern. I offer the following numerical pattern and
ask the reader to fill in the value z in the pattern.

1,2,3,x.

Most readers will choose z = 4 as the next obvious value. Some
might choose z = 5 since the (obvious) pattern could be that the
next number is the sum of the previous two.
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Another example is the sequence
2,4,8,x

with which we ask for the next number z. Some would say that the
pattern is
2',2%,2%, 2

so that z = 2% = 16. Others might claim that the pattern is more
recursive and conclude that the next number is the product of the
previous two. Hence

2.4,2-4,4-8 =32

is the most obvious pattern, and so z = 32 is the next value. So
which pattern is the most obvious?

The answer is that neither is more obvious. In fact it has been
proved that the three numbers 1,2,3 and 2,4, 8 satisfy infinitely
many patterns, and so no pattern is the obvious pattern. We only
choose the most familiar patterns. The most obvious pattern cannot
be found because there is no way to judge obuviousness for a pattern
from the infinitely many patterns available. Thus we should not
look at three numbers and then quickly point out some pattern as
the only obvious correct one.

Here is an open question for the reader. Suppose I give you three
natural numbers
2,3,5

and ask you for the fourth one z. What pattern did I have in
mind? Remember that there are many values for x because there
are many patterns whose first three values are 2,3,5. 1 had z = 8
in mind. Why is that? Another equally legitimate number would
be x = 7. Why did I choose these numbers, reader? I leave the first
to your imagination. The value x = 7 was chosen because it is the
next prime number. 2,3,5,7,... could have been the implied list of
prime numbers.

Let us consider an old chestnut as an example of Mathematical
Induction in mathematics. We previously examined this example
on page 92.
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Example 6.1.6 Let n € N. Then

n(n + 1)
—a

Proof: As the Initial Step of this proof we observe that

O4+14+...4+n=

0(0+1)

0= .
2

Thus the formula is true for 0.

Induction Hypothesis: Assume that you have proved the result
for some natural number £ > 0, and in fact you have. You have
proved it for the natural number 0. In this example our Induction
Hypothesis is
k(k +1)

5

We can begin the Induction Step. We must give a general argu-
ment that shows how the formula for k£ + 1 can be derived from the
Induction Hypothesis. That is, we must prove that

O4...+k+(kt1)= (’“+1)((162+1)+1)= (k+1)2(k+2)'

The sum 0 + ...+ k + (k + 1) can be regrouped as

O+...+k=

O+...+k)+ (k+1),

so by the Induction Hypothesis

O+...+k)+(k+1)=

Next, a little algebra shows us that

+(k+1):k(k+1);2(k+1): (k+2)2(k+1))

k(k+ 1)
2

or equivalently that

0+...+k+(k+1)=(i+—1)2(ﬁ2—).

This is what we had to show.
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The most important step in the proof is this last one. By Math-
ematical Induction we conclude that

n(n+1)

0+... =
+...+n 2

is true for each n € N.

You might ask why we are interested in Mathematical Induction.
After all, you might say, there is nothing wrong with the argument
we gave on page 92. There is a subtlety that can give us trouble
in more general settings. The idea is this. We have written the
argument so that the numbers on page 92 match up perfectly as in
the following expression.

S:

1 2
S =17 -1

+ +
+ ¢ +
We know that the sum of the first and last column entries in this
expression is £ + 1. We assumed that the sum on any column in
this expression is (k) + (( — k + 1) = £+ 1. But how do we know
this? There must be some concrete mathematical reason why the
columns in this expression match up as they do, and there is no hint
of that reason in the argument we gave on page 92. The argument
above using Mathematical Induction provides us with a bridge for
the gap in our earlier argument. Mathematical Induction gives us a
neat way of jumping from the fact that the first column adds up to
£+1 to the truth that each column adds up to £+ 1. This is exactly
the type of mathematical fact on which Mathematical Induction is
designed to work.

Here is another algebraic application of Mathematical Induction.
Recall that a natural number n is an odd number if n = 2k — 1 for
some £k = 1,2 3,.... In general, 2k — 1 with £ = 1,2 3,... is
the kth odd number. Thus 2(1) — 1 = 1 is the first odd number,
2(10) — 1 = 19 is the 10th odd number, and 2(101) — 1 = 201 is
the 101st odd number. Galileo (circa 1580) noticed that the sum of
the first n odd numbers is the nth perfect square. Specifically, he
noticed that if he wrote down the first 2 odd prime numbers that
they added up to 2%, if he wrote down the first 3 odd prime numbers
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that they added up to 32, and if he wrote down the first 4 odd prime
numbers that they added up to 42.

22 = 143,
32 = 14345,
42 = 143+5+47.

He then concluded that
nP=1424+3+...+(2n-1)

but without proof. We will use Mathematical Induction to show
that this identity is the case for all natural numbers n > 0.

Example 6.1.7 n? is the sum of the first n odd numbers.

Proof: Initial Step: By replacing n with 1 we see that
’=1=2-1-1

Thus the Initial Step has been established.
Induction Hypothesis: Assume that k* =1+ ...+ (2k — 1) for
some natural number £ > 0.
Induction Step: Show that (k+1)2=1+...4+ (2(k+1)—1).
Begin by grouping the sum of £ + 1 terms.

I+...4+ 2k-1+ (2(k+1)-1)
= [1+...+ 2k-1]+ (2k+1).

The Induction Hypothesis and a little algebra will show that

I+ +@k—1]+@2k+1) = kK +2k+1
(k+1)%

Thus
k+12=[14+...+ 2k-1D]+ k+1)-1),

which is what we had to prove.
Therefore, by Mathematical Induction,

nf=1+4+34+5+...4+ (2n—1)

for all natural numbers n > 1. This completes the proof.
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Here is another story in mathematics that shows us that patterns
are not always as obvious as they first appear. The equation

ax+b=0and a#0

can be solved by even the youngest of mathematical students. It
is important to note that the exponent of z is 1 in this equation.
Next, the high school student knows that the quadratic formula

o —b+ vb? — 4ac
- 2a

will solve the quadratic polynomial equation

(6.1)

az® + bz +c=0and a # 0.

The solution features a square root (a radical) /% and the coeffi-
cients a,b,c of the polynomial equation. Notice that the highest
power of z that occurs is 2. We say that the expression (6.1) is a
solution by radicals of the polynomial equation of degree 2.

In about 1535 AD the Italian mathematician Tartaglia showed
that the equation

az® +bz*+cz+d=0and a #0

can be solved by radicals. His solution featured cube roots ¥y,
square roots, and the coefficients on the polynomial equation. Since
this polynomial equation has degree 3, Tartaglia’s solution is said
to be a solution by radicals of the polynomial equation of degree 3.

Tartaglia’s solution was published in 1545 in Cardano’s book
Ars Magna. The Ars Magna also contained the first publication of
the solution to the polynomial equation

az? + bz® + dr*+ ez + f=0and a #£ 0.

The solution to this polynomial equation of degree 4 also featured
fourth roots /y, cube roots, square roots, and the coeflicients of
the polynomial equation. Thus we have solutions by radicals for
polynomial equations of degrees 1, 2, 3, and 4. Is there a pattern
here?

The above history may seem to indicate a pattern. If polynomial
equations of degree 1, 2, 3, 4 can be solved by radicals, we might
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then suggest that it is obvious that the fifth degree polynomial
equation

az’ + bz +dz’ + ez’ + fr+g=0and a #0

has a solution by radicals. Unfortunately, the mathematical gods
are playing games with us. The supposed pattern is misleading. In
1821 a 21 year old Norwegian mathematician, Niels Abel, showed
that there is no solution by radicals to the polynomial equation of
degree 5. In fact, an 18 year old French mathematician, Evariste
Galois, showed that except for these first four degrees, the general
polynomial equation is not solvable by radicals like the first four are.
So what happened to our obvious pattern? It must be that there was
never a pattern to find. The pattern evaporated. It disappeared.
It was never there. This is an important thought. Mathematicians
must be careful in deciding when a pattern exists and when it does
not exist. This is not as easy as it might seem since most people
seem to see patterns everywhere. The best defense against seeing
phantom patterns is to use a good solid argument that includes
Mathematical Induction.

The next story concerns a misuse of Mathematical Induction.
This example elegantly demonstrates the importance of the Initial
Step in a proof using Mathematical Induction. The story is called
The Unexpected Termination.

Example 6.1.8 A company Boss wants to fire a Supervising Bar-
ber who works in the Hair Styling Branch of the company. The
firing will take place at 9:00 AM sometime between Sunday and
Saturday of next week. However, since the Boss does not want the
Barber to anxiously await his last day, he decides not to tell the
man which day will be his last. The Barber catches wind of this
compassion and decides to use it to his advantage.

The Barber decides that he will not be terminated. His argu-
ment is as follows. He reasons that if he has not heard about his
termination by 9 AM Friday then he most certainly will not be ter-
minated the next day, Saturday. This is because the Boss must fire
this Barber at 9 AM Saturday. He would then be upset all day
Friday while he waited for the axe to fall on Saturday. The compas-
sionate Boss does not want the Barber to suffer in that way, so the
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Barber concludes that he will not be terminated Saturday. He rea-
sons that he can use this fact as the initial step in a Mathematical
Induction.

Suppose that the Barber has argued that he will not been ter-
minated on day & — 1. (Think of Saturday as day 1, Friday as day
2, and so on to Sunday which is Day 7.) He reasons about Day k
as follows. If he has not heard about his termination by 9 AM of
Day k + 1 then he most certainly will not be terminated the next
day, Day k, because in that case the Barber would be upset all day
long Day k + 1 contrary to the compassionate Boss’s wishes. Thus
the Barber concludes that he will not be terminated on Day k. The
Barber concludes by Mathematical Induction that he will not be
terminated on any day n that week. Unfortunately, the Boss termi-
nates the Barber at 9 AM on Wednesday. The Barber’s argument
must have been flawed, but where is that flaw?

Let us examine that argument in detail. The Barber will not be
terminated Saturday for the reasons given in the Induction Step. So
maybe Friday is the termination day. If so then Thursday morning
at 10 AM he will know that he is not to be terminated Thursday,
and so a Friday termination is the only thing possible. He would
then fret, contrary to the compassionate Boss’ wishes. He concludes
that Friday is not the day. Will Thursday be his termination day?
No. The same argument applies. Try it yourself. We then use the
familiar dots, . . ., to conclude that the Barber will not be terminated
that week.

So where is the error in that argument? I leave it to you to think
about The Unexpected Termination for a while. Try not to peek at
the answer before you work with the problem a little.

As we said earlier the answer concerns the Initial Step. His
initial assumption is that he has a job on Friday. This renders the
rest of the argument mute because if he has a job Friday then he
has not been terminated at all. Thus he has assumed that which he
wants to prove, and there is his mistake. If you want to prove that
you will not be terminated then you cannot make an assumption
that assumes that you will not be terminated.

We hope that these examples have helped you to understand the
process called Mathematical Induction. Recapping, we begin with
a process P that is defined at each n € N. Induction begins by
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showing that the process is true for some intial value, say, 0. In the
Induction Hypothesis we assume that P(k) is true for some k € N,
and in the Induction Step we show how P(k) leads us to P(k + 1).
We then conclude by Mathematical Induction that P(n) is true for
all n € N.

Use Mathematical Induction to show the following.

1
112422+ ... 4+n?= gn(n+1)(2n+1) for each n € N.

1
2. 13~l~23~l~...~l~n3=£—1n2(n~l~1)2 for each n € N.

. (1-z)(l+z+x?+...+x") =1—2"t! for eachn € N.

6.2 Transfinite Induction

The power of Mathematical Induction comes from the fact that
it works for any process defined for each n € N. The limits of
Mathematical Induction come from the fact that it only works for
processes defined for each n € N. There are some very important
processes that are defined for every ordinal «. Thus if P is a process
defined for ordinals, then Mathematical Induction will show that
P(n) is true for each n € N but it will miss the truth of P(w,). For
example, we used Mathematical Induction to show that the cleaning
lady in Hilbert’s Infinite Hotel on page 98 will eventually clean all of
the rooms labelled with n € N. However, our discussion missed the
room for Hotel Staff labelled with wg. We found her in that room
on page 184. In this way Mathematical Induction can be applied
to processes defined for each natural number n < wy but it fails for
processes defined for the ordinals o > wy. In this section we will
present an induction that can be applied to infinite ordinals as well
as N.

Let P be a process that is defined for all ordinals «. In other
words, P(«) is defined or makes mathematical sense for each ordinal
a. A proof by Transfinite Induction will proceed as follows.

1. Initial Step: Prove that P(0) is true.

2. Induction Hypothesis: Assume that there is an ordinal « such
that P(() is true for each ordinal § < a.
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3. Induction Step: Show that P(a) is true.
4. Conclude that P(v) is true for all ordinals ~.

We will use Transfinite Induction to replace the phrases continue
indefinitely and continue in the same manner that accompanied
some vague arguments that we encountered in some earlier proofs.
Some examples of arguments using Transfinite Induction will help
us see what all of this formality is about.

Example 6.2.1 The first example is the simplest possible. We will
construct a well ordered set.
Initial Step: We choose a smallest element which we denote by

Induction Hypothesis: We assume that for some ordinal o we
have constructed a set

Pla) ={z3 [ﬁ < a}
with an ordering given by
Zo < Ty <...<z3<... for each ordinal § < a.

Hopefully you see the pattern.

The order on P(c) is not a well ordering since it is possible that
Za-1 is in P(a) but by definition of P(c) no successor element for
Za-1 exists in P(a). For example, given o = 5 our set is

P(5) = {zo, 21, x2, T3, 74} = {25 | B < 5}
and the ordering is
Top < T < Tp < I3 < Ty.

The element z4 does not have a successor element.
For a = wq our set is

P((.Uo) = {x0>xl>x2> .- } = {xﬁ \ﬁ < WO}.
Unlike the previous set, this ordering is without end.

o<1 <2< .. ..
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Before reading on, the reader should write down the set correspond-
ing to yy+1. It is

P(wo+ 1) = {zo, 21, 22,...,Zup} = {z5| B <wo+ 1}.

We make no special hypothesis about the nature of the symbols
Zn. We define the order in the set P(wp + 1) as

To <X <o < ... < Ty,

Notice that z., is the unique largest element in this set. It has no
successor in P(wg + 1).
Induction Step: The object here is to prove that there is a set

Pla+1)={zs|B8< a+1}
whose ordering is given by
To < T <...<23<...< x4 for each ordinal 3 < a.
Choose a symbol z, that is not in P(«) and form the set
Pla+1)={z3|B<a+1} ={zs| B < o} U{z.}

by simply requiring that
I3 < Ty

for each ordinal 3 < a.
We conclude, by Transfinite Induction, that there is a well or-
dered set
P = {z, |~ is an ordinal}.

This set is well ordered because for each element z, there is a suc-
cessor element ;. The element z,,; exists by the Induction Step
above. Actually, the limit P is not a set. It is a collection. It turns
out that P is larger than any set so it cannot be a set. We will have
more to say about this kind of anomaly later.

Notice in the above example that we did not have to prove any-
thing for o + 1 as we did in Mathematical Induction. We use the
Induction Hypothesis to prove something about the construction
process as it exists prior to a. Try to keep this in mind as these
examples continue.
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Example 6.2.2 Here is another example of Transfinite Induction.
Suppose that there is some universal set U given, and suppose that
there is a transfinite chain of subsets of U

UycUCc...cU,C...CU,

where « ranges over all of the ordinals. Further suppose that there
is some special element u € U that is not in U, for any ordinal a:

u € U, for each ordinal a.

We will show, using Transfinite Induction, that

u g Uall ordinals (¢ UO“

Picture (6.2) will help you to visualize what we are doing. The
set Us includes U; and the set Us includes U;. The set U is the
union of all of the sets U,, o an ordinal. Notice that the element «
is not in any of the sets U,.

U= Uall ordinals o UOI

U

Uz (6.2)

Uy

Uo
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Initial Step: 1t is clear that u & Uj so that
ug | JUs = U
B<1

This begins the induction process.
Induction Hypothesis: Let us assume that

u ¢ U Us
B<a

for some ordinal a.
Induction Step: In the Induction Step we must show that

ug |J Us
B<a+l

From the Induction Hypothesis we know that

ug | Us,

B<a

and by the hypothesis that starts this problem u ¢ U,. Then by
the definition of the set operation U we have

ugUau<UUﬁ)=UUﬁ= U Us.

B<a BLa B<ca+l

This is what we had to prove.

We conclude, by Transfinite Induction, that

all ordinals 8

What we have just shown is that if the U, do not contain a
point u then the union of the U, fails to contain that point u. We
accomplished this by showing that the union

UQUU1UU2UUUﬁ fOI'ﬁ(Q

does not contain the point uw and then concluded by Transfinite
Induction that the total union does not contain the point u.
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Example 6.2.3 Given an ordinal o let

W = {ordinals 7| a < 7}.

The set W, is the chain of ordinals that lie above « on the chain of
ordinals. Thus W, can be thought of as a line of ordinals beginning
at a + 1 and continuing on indefinitely. So

a+l,a+2,a+3,... € W,.

In terms of a picture we have

0 1 2 eee o a+1 XX

T

44

We might also envision the sets W, as follows.

Wo

W,
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Using Transfinite Induction we will show that

nall ordinals o Wa = @

Initial Step: 1 ¢ W since W) is the set {y|1 < v} of ordinals
that are strictly larger than 1. Since

(1 Wacw,

all ordinals o

we conclude that

1¢ () W

all ordinals a

Induction Hypothesis: Assume that for some ordinal 3 we have
Bg () Wa
all ordinals o

Induction Step: Since Wiy, = {ordinals 'y]ﬁ—H < v}, it follows
that

B+1¢ Wy
Since
(| WaC Waa,
all ordinals o
we find that

B+1¢ () Wa

all ordinals o

Therefore, by Transfinite Induction,
v¢ () Wa
all ordinals o

for any ordinal 4. Thus ()
nals, which implies that

all ordinals o Wa does not contain any ordi-

| W.=0.

all ordinals a
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Example 6.2.4 (With an acknowledgment to Douglas R. Hofs-
tader [5].) This is a story that illustrates how Transfinite Induction
takes over where Mathematical Induction ends.

It seems that the magic lamp was passed down from generation
to generation of Aladdin’s family. The current heir to the lamp, Al,
is a mathematician with a droll sense of humor. When he rubbed
the lamp the genie appeared and said, “You have three wishes.”
Using his droll humor he said, “I wish for more wishes.” “That
is @ wish about wishes and I cannot grant such a thing,” the genie
responded. “It would be like the Mayor of New York City acting
like the President of the United States. Before I can grant your
wish I must ask for my Boss’ permission. His name is

M.

M, grants my wishes.”

So the genie contacted M, and said, “I wish to grant a wish
about wishes.” M) thought for a minute and said, “You have made
a wish about a wish about wishes. Before I can grant your wish I
must ask for my Boss’ permission. His name is M. M, grants my
wishes.”

Once M, is contacted M, asks, “I wish to grant a wish about
a wish about wishes.” Of course, M, saw through that wish right
away and said, “That is a wish about a wish about a wish about
wishes, and I cannot grant it without the permission of my boss,
Mj;. Mj grants my wishes.”

The process of asking the boss M,, continued once for each n €
N, where

M, grants the wishes to M,,.

(The observant reader might observe that we did not define M.
We will assume that My is Al. Thus M) grant’s My’s wishes.)
The problem was that no one could give the permission that would
eventually grant Al's wish. No matter how far up the chain the
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request travelled no boss M, could grant permission to the boss
M,,. The chain of bosses {M, |n € N} has no maximal element.

The chain of bosses { M, ] n € N} is only a part of a well ordered
chain of bosses. Let me introduce you to the boss of all of the chain
{M, |n € N}. His name is

M.,.

Because he is a good administrator, he realized the predicament his
people were in so he thought he would just give all of the M,, per-
mission to grant those wishes. But you see, being an administrator
M., must ask permission from his boss M,,,,; before he can grant
wishes about wishes for each M,, with n € N.

The transfinite process here is now quite clear. Suppose that we
are given an ordinal « such that

boss Mjp exists for each ordinal 8 < «

and such that

Mg, grants Mj's wishes for each ordinal 8 < a.

Define boss M, who is the boss of all Mg with § < «. Then we
have extended our discussion to include all bosses Mg such that
8 < a < a+ 1. By Transfinite Induction, for each ordinal k, each
boss M}, grants wishes for boss M.

The problem is that there is no boss M at the top of this chain
to give everyone permission to grant wishes. The story has a happy
ending though, as The Supreme One saw what was going on and
said to each boss M,, “Grant Al's wishes and let’s get on with the
work of the day.” And so it was done.

Before continuing on to the next section let me present a process
called Student Induction. It seems that a certain University cancels
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classes the Wednesday prior to Thanksgiving Thursday. This gives
the students an initial day off. They then rationalize that since
there are no classes Wednesday they can leave for home Tuesday
night. This is not too hard to understand. The anticipation of
the holiday being what it is they decide to leave earlier that day,
Tuesday afternoon. No, make it Tuesday morning because knowing
that they are leaving for home at noon, they lose their concentration
in the morning classes. But then, why not leave Monday. Well
nobody is going to stay at college for one day of classes so they
argue that they can leave Sunday night. Get real. No one will
stay the weekend to leave Sunday night, so they leave late Friday.
No. Not late. No one has enthusiasm for Friday classes so they
decide to leave Thursday night. With this kind of Student Induction
taking place the student is soon leaving on Halloween (October 31)
in anticipation of the Thanksgiving holiday (the last Thursday in
November). The same process is at work in the Spring Semester
when the students prepare for Spring Break. They are soon leaving
in January for a vacation that does not take place until March. We
leave the details to be filled in by the reader.

6.3 Mathematical Recursion

Another process that is designed to take the ellipsis . .. out of math-
ematical definitions is call recursion. Recursion is a mathematical
device that defines one object in terms of another smaller object.
This smaller object is similar to the larger one but not at quite
the same size. The first recursion usually seen by the student is n
factorial. This n factorial is defined as

0! = 1and
n! = n(n — 1)! for integers n > 1.

Do you see that n! is defined in terms of the smaller number (n—1)!1?
For example,

1l = 1-00=1-1=1,

3 = 3.2 =3-(2:-1)=3-(2-1) =6,
100 = 10-(9)=10-9-8=10-9-8-7-6-5-4-3-2-1.
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We do not define n! for negative numbers and we do not define n!
for fractions. The number n! in this book is defined only for whole
nonnegative numbers n.

The definition of n! is recursive because it is defined in terms of
a factorial at a smaller value. We can define other numbers in this
way. We let

To = Oand
T, = n+ T, for integers n > 1.

T, is called the nth triangular number and it is the number of dots
needed to form a triangular array. For instance, since one dot forms
a (trivial) triangular array, T} = 1 is a triangular number.

[ ]
The formula for triangular numbers shows us that
T2=2+T1=2+1=3

Thus 3 is the number of dots needed to form the next larger trian-
gular array, as in the illustration below.

[ ]
For larger triangular numbers proceed recursively.
Ty=3+T,=34+3=6

since we know that T, = 3. The triangular array for T3 is formed
by adding a row of three dots into the previous triangular array.

[ ]
e o

Notice that T3 is found by counting the number of dots in a tri-
angular array of dots whose base has 3 dots. The same is said for
T,=4+T3=4+6=10.
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Actually, we were introduced to triangular numbers when we
examined the sum
14243+...+n.

A little induction will show that

T,=1+24+3+...+nforn>0.

Proof: Evidently T; = 1 so the Initial Step is defined.
Suppose that T =1+ 2 + ... + k for some integer kK > 0. This
is the Induction Hypothesis.
We must show that Tp1; =1+ 2+ ...+ (kK + 1). By definition
and the Induction Hypothesis,
Tiyn = (k+1)+ T
Tepp = K+1)+(1+2+...+k)
Ter1 = 1+24+...+k)+(k+1).

Therefore, by Mathematical Induction,
T,=14+24+...4+n
for each integer n > 0.

Subsequently, by using the formula found by little Gauss on page
92, we see that

1
T, = @ for each integer n > 0. (6.4)
Our recursive formula for T,, = n+7T,_; is then replaced by a closed
n(n + 1)

formula for T, = ——.

Closed formulas have their advantages. The most immediate
advantage is that we can calculate Ty without calculating T, for

all 0 < n < 10.
10(10+ 1)

2
Larger triangular numbers can be calculated without the use of
smaller triangular numbers or of triangular arrays.

100(100 + 1
Tioo = (—QQ = 5050.

Ty = = 55.
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This is the advantage of closed formulas.

There is an interesting formula involving triangular numbers and
perfect squares. We will show that

T, + T, = n? for each integer n > 0.

In words, consecutive triangular numbers add up to a perfect square.
That should sound satisfying to you. Two triangular numbers add
up to a square number. How many times have you broken a square
into two triangles using a pencil and a ruler? Now you have a
numerical identity that does the same thing to numbers. A square
number is the sum of two triangular numbers.

Proof: By (6.4) we have

nn+1) (n—1)n
2 + 2
(n+1)+(n—-1))

Thn+T, =

SIEE
©
2

Il
3
T

This is what we had to prove. Therefore T, + T,,_; = n? for each
integer n > 1.

Another sum that adds up to a perfect square is due to Galileo
(circa 1600 AD). Observe that

1+3=4

and that
1+3+5=09.

Thus the sum of the first two odd numbers is the second perfect
square, and the sum of the first three odd numbers is the third
perfect square. Care to guess about the sum

1+34+...4+29
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of the first 15 odd numbers? Of course the pattern is set. The sum
is 152, the 15th perfect square. Care to prove this pattern holds for
all integers n > 1, reader? Let us do just that.

1+3+4...+(2n—-1)=nk

The sum of the first n odd numbers is the nth perfect square.

Proof: We use induction. Since 1 = 12 we have established the
intial step.

Assume that 1+ 3+ ...+ (2k — 1) = k2. This is the Induction
Hypothesis. We must show that

14+3+...+(2(k+1)—1) = (k+1)%
By the induction hypothesis

1+, +@Kk+1)-1) = I+...+Ck-1))+2(k+1)-1)
= K+ (2k+1)
= (k+1)>

Therefore, by Mathematical Induction, the sum 1+ ...+ (2n — 1)
2

of the first n odd numbers is the nth perfect square n*.

The first few sums of odd numbers can be seen in the following
diagrams. Think of one square as being formed by adding dots to
the edge and then count the odd number of dots that are added to
the recursive square.

[ X N ] J
[ L N J e 0 00
[ 1 J [ 20 N J .’_.:
) de o[: oo 00
12 143=22 (14+3)+5=32 (14+3+5)+7=47%
Draw the next square in the pattern to see that 4249 = (1 +3 +

5+4+7)+9=5%
Here is an example of recursion in an infinite setting.
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Example 6.3.1 Hilbert has expanded the Infinite Hotel to accom-
modate any and all guests. To do this he adds on one room for each
ordinal to his Infinite Hotel using recursion.

The Intial Step is to construct room 1.

The Induction Hypothesis is to assume that there is an ordinal
« for which we have constructed rooms 3 for each ordinal § < «.
Let H, be this construction. We construct room « onto H, thus
arriving at a hotel with rooms g for ordinals § < a + 1. We have
constructed H,,,.

Therefore, by Transfinite Induction, we have constructed the
hotel H with rooms 3 for each ordinal 3. The result is something
more. The Infinite Hotel is now a Transfinite Hotel. For instance,
there is a room wp, a room wg®, and so on.

step 0 XX step o step a + 1 XX

The Transfinite Hotel is not a set, though. It is bigger than any set
can be. We will consider the matter more closely later.

Mary cleans each room « and then cleans room a+1. Time is no
longer an issue since Hilbert and the Hotel Staff signed a collective
bargaining agreement that stops time. Thus, no matter how many
rooms are cleaned, no time has passed. It also means that when she
goes home there is no end to her leisure time since that time does
not pass. In this way Mary can start with room 1, then clean all
of the rooms in the Transfinite Hotel within her work day, and still
have time for the grandchildren Paul and John. We will show that
she does indeed clean all of the rooms.

The initial room, room 1, is cleaned shortly after she arrives at
work. .

Inductively, assume that there is some ordinal « such that Mary
has cleaned room ( for each ordinal g < a.

Having cleaned rooms g3 for 8 < a Mary finds herself in front of
room «. Since she is industrious, she enters the room and cleans it.
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Thus room « is cleaned so that room g3 is cleaned for each ordinal
B<a+1.

We conclude by Transfinite Induction that Mary has cleaned
room < for each ordinal . At this time she joins a colleague and
sits and talks in the Hotel Staff Lounge.

6.4 Number Theory

The numbers considered in this section are whole numbers and non-
negative numbers. We will not be considering negative fractions,
although we will need to consider 0,1, 2,.... In this section we will
use mathematical induction and recursion to give mathematical cer-
tainty to some facts we have all heard about integers.

The number p > 1 is said to be prime exactly when

p = ab implies that a = pora = 1.

Another way of saying this is that p is not 1 and p is divisible only
by itself and 1. A number a is a factor of n if there is a number
b such that ab = n. The number a is a prime factor of n is a is
a prime number and q is a factor of n. For example, 3 is a prime
factor of 6 and 15 while 7 is a prime factor of 49. Prime factors, it
seems, are everywhere.

Lemma 6.4.1 Every number n > 1 has a prime factor.

Proof: Let us assume to the contrary that there is a positive
number n that has no prime factors. We take the smallest such
number n. Then n is not prime (since otherwise it would be a
prime factor of itself) so we can write

n=ab

for some numbers a,b not in {n,1}. Since a # n and b # 1 divide
n, a is smaller than n.

n
a=—<n.

b
Since n is the smallest number without a prime factor, a has a prime
factor p, say,
a = pe.
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But then p is also a prime factor of n since
n = ab = p(cb).

This contradiction to our assumption shows us that every number
n possesses a prime factor.

The next result is one that goes back to the Greek geometer
Euclid (circa 300 BC). He proves that there are infinitely many
prime numbers. That may sound obvious at first. You have known
it since birth or since early in your education. In fact, you were
given a known mathematical fact and you were asked to memorize
it. You accepted it as a truth. But mathematics can give certainty
to the arithmetic facts you learned as a child. That is what we will
do here. We will give mathematical certainty to some arithmetic
facts that we learned at a young and impressional age.

Theorem 6.4.2 [Euclid] There are infinitely many prime numbers.

Proof: We offer a proof by contradiction. Suppose to the con-
trary that there is only a finite list of prime numbers. Write down
that finite list.

P, P25+ Dt

Consider the number

N=pps---ps+ 1

Since every number has a prime factor, N has a prime factor p.
However, p # p; since division of N by p; leaves a remainder of 1,
p # pa since division of N by p, leaves a remainder of 1, and so
on. p # p; since division of N by p; leaves a remainder of 1. Since
P1, P2, ..., P is supposed to be a list of all of the primes and since
p is a prime not on the list, we have found our contradiction. Thus
the list of primes is infinite.

Let us try to show what this result has done. Given any finite
set of primes it shows us how to locate a new prime. For instance,
the number

N=2-3-5-T+1=215,442
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is divisible by a prime number p such that p # 2,3,5,7. We can
verify this by writing down the number N in a more familiar way.

N=2.-3.5-7+1=121=11%

Thus the new prime is 11. Eleven was not on our finite list of primes,
but it is surely not the last prime that exists.
In the same way the number

N=17-19-23-29+1

has a prime divisor p. We do not know what p is but we can say
with certainty that p is not on the finite list of primes

17,19,23,29.
This is what the proof of Theorem 6.4.2 has done.

Just how many times is a number n divisible by a prime? In-
finitely often? Finitely often? The next lemma resolves this ques-
tion.

Lemma 6.4.3 Let n be a number with prime divisor p. There is an
exponent t and a number b such that n = p'b and b is not divisible
by p. That is, p divides n exactly t times and no more.

Proof: We proceed by contradiction. Suppose there is a number
n and a prime p such that p divides n infinitely often. That is, we
can write

n = pb; = p?by = ...
for some integers b1, by, .... Then
n
b= >by= 2 >by= o> ...
P p P

is an infinite list of smaller and smaller positive integers. This is
impossible so our supposition was incorrect. Each prime divisor of
n divides n at most finitely often and no more. This completes the
proof.
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Theorem 6.4.4 Let n > 2 be a positive integer. There are primes
P1,- .., Pt sSuch that

Let us agree to call (6.5) a prime factorization of n.

Proof: We apply induction. The result is true for n = 2 since in
this case n = p; = 2.

Assume that we have arrived at an integer k > 2 for which each
number m < k has a prime factorization like (6.5). This is our
Induction Hypothesis.

We must find a prime factorization for k + 1. By Lemma 6.4.1,
k + 1 has a prime factor p. Then

k+1
L<k+1
p

has a prime factorization by the Induction Hypothesis. Hence we
can write

for some primes pi, ..., p,. It follows that

k+1=p(p1...ps),

which is a prime factorization of k + 1.
Therefore, by Mathematical Induction, each integer n > 2 has a
prime factorization.

6.5 The Fundamental Theorem
of Arithmetic

The above theorem shows us that each integer n > 1 has a factor-
ization into primes. But we know more than that, don’t we, reader?
We know that there is one and only one way to factor an integer
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n > 1. This uniqueness is where we are headed to now. Such a re-
sult is important enough that mathematicians have given it a name.

The Fundamental Theorem of Arithmetic: Let n > 2 be an
integer.

1. There is a finite list of primes py,...,p: such that n = p, ... p;.

2. If n=¢q...qs for some other list of primes ¢y, ..., gs, then s =
t and after a permutation of the list entries, p; = ¢; for each
i=1,...,t. We say that n has unique prime factorization.

Proof: 1. This is Theorem 6.4.4.
2. We apply proof by contradiction. Suppose there is a number
n > 2 that possesses two different prime factorizations, say

n_—_pl...pt:ql...qs

for some finite lists p;,...,p; and qi,...,q, of primes. Choose the
smallest integer n with this property. Then the lists py,...,p; and
q,-..,qs are different. After permuting the subscripts we can as-
sume that p; is not on the finite list q1,..., ¢, and

Then q; — p1 < ¢ so that

(@ —P1)(@2 - q) <qi(ge---¢s) = 7.

Since n is the smallest integer with nonunique prime factorization,

m=(q —p1)(g ) (6.7)

has a unique prime factorization.

By hypothesis p; # ¢; for i = 1,...,s, and p, does not divide
q1 — p1- (Otherwise p; is a divisor of the prime (¢; — p1) +p1 = q1,
contrary to (6.6).) Since (6.7) is a unique prime factorization of m,
p1 does not divide m. On the other hand, p; divides n so p; does
not divide n — m. However,

n—m = QG- q—(q —P1)g2- "¢,
(@1 — (@1 — 1)) (@2 qs)
(P1)(g2- - qs)-
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This obvious contradiction shows us that our supposition was in-
correct. Thus the finite lists p;,...,p; and qi,...,q, are the same.
Subsequently the number of terms s and ¢ on these lists are the
same.
s§=t
This is what we had to prove to complete the proof of part 2, and
thus finish the proof of the Theorem.

Let us illustrate the above theorem with a number. The number
n = 215,441

has a unique prime factorization. At present we do not know what
it is but we do know that unique prime factorization exists for n.
Some work with a calculator shows us that

n=17-19-23-29

is a prime factorization of n. The Fundamental Theorem of Arith-
metic shows us that this is the only prime factorization of n. If
we have a prime factor p of n then the Fundamental Theorem of
Arithmetic states that p is on the list

17,19,23,29.

No other primes are allowed to divide n. That is the power of the
Fundamental Theorem of Arithmetic. Without even knowing what
p is we know that it is one of the four primes on the list.

6.6 Perfect Numbers

Euclid is also known for introducing us to perfect numbers. The
number m > 0 is said to be perfect if m is the sum of the numbers
properly dividing m. Thus 6 is a perfect number since 1,2,3 are
the proper divisors of 6 and

=1+4+2+3.

Six is the sum of its proper divisors. The next perfect number is 28
because 1,2,4,7,14 are the proper divisors of 24 and

28=1424+4+4+7+14.
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Other perfect numbers we know are 496, 521, 607, and 1279. These
perfect numbers were found by some computer use in 1952. In those
days, number problems like this were used to test a computer’s
accuracy. This calculation continues, though, as computers are still
being used to factor numbers of the form 2™ — 1.

So far these perfect numbers have a curious property. They are
all even numbers. Are all perfect numbers even? Currently, no one
knows. This uncertainty enhances interest in perfect numbers. For
the even perfect numbers, there is the following theorem also due
to Euclid.

Theorem 6.6.1 [Euclid] If 2" — 1 is a prime number then
27=1(2" — 1) is a perfect number.

Euclid’s proof of this theorem was geometric in nature since
Greek algebra was under developed. The proof has evolved over
the years into the following algebraic gem. Late in the eighteenth
century the prodigious mathematician Leonard Euler (circa 1750
AD) showed that if m is an even perfect number then there is an
integer n such that 2" —1 is a prime number and m = 2"~1(2" — 1).
Think of the gap in time here. Euclid (300 BC) introduced perfect
numbers but it took until Euler (1750 AD) to show that all even
perfect numbers are encompassed by Euclid’s Theorem. That makes
2050 years between first sight and last sight. This must be one hard
type of number to study if it takes over two millennia to make
substantial progress on the classification problem.

Thus Euclid’s Theorem accounts for all of the even perfect num-
bers. We are left to wonder about the open question.

Open Question: Are there any odd perfect numbers? That is, is
there an odd number m that is the sum of its proper divisors?

For example, 5 is not a perfect number since 1 is the only proper
divisor of 5 and 5 is not the sum of its proper divisor 1. The odd
number 25 is not the sum of its proper divisors 1, 5 because

253£1+5.

You can use your computer to verify that there are no odd perfect
numbers less than 100.
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Let us prove Euclid’s Theorem.
Proof: Suppose we know that p = 2™ — 1 is a prime for some
integer n > 1. Then we have a unique prime factorization

m = 2""1p,

The prime divisors of m are 2 and p so any proper divisor d of m is
a multiple of 2 and p,
d= 2k e’

where k can be any integer in {0,1,...,n — 1} and e is either 0 or
1. That means that the proper divisors of m that are not divisible
by p are

1,2,2%,..., 27!

and the proper divisors divisible by p are
p,2p,2%,...,2" %p.

(We do not include 2"~!p = m since it is not a proper divisor of m.)
No other numbers are possible. Recall the geometric identity

1—2z"

11—z

l+z4+224+... +2" 1 =

with common ratio z. If x = 2 then we have
1424224+ 427 =271
Hence adding up the proper divisors of m yields geometric identities

1+24+22 4. 42714
p+2p+2%p+...+27%p

142422 4. 42714
(1+2+22+...+27%p

e -1+ -1p =
p+(2*—1)p
2n—1

m

<
!

This shows that m is a perfect number and completes the proof of
Euclid’s Theorem.
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Therefore there will be an infinite number of perfect numbers
if there are infinitely many numbers n such that 2" — 1 is a prime
number. At the time of this writing, it is not known if there are
infinitely many primes of the form 2" — 1, and so it is not known if
there are infinitely many even perfect numbers.



Chapter 7

Prime Numbers

7.1 Prime Number Generators

Theorem 6.4.2 shows that there are infinitely many primes. The
next step then would be to decide where these primes are. The
pursuit of prime numbers goes back to the Greeks and is currently
a source of mathematical investigation and inspiration. We will
discuss the two ends of this time line.

The Greeks had a clever way of finding the prime numbers less
than some fixed number. They called it The Sieve. Basically, if you
wanted to find all of the prime numbers less than a given number,
let us say 60, you would first write down all of the numbers less
than 60 starting with 2. (Leave 1 out because 1 is not a prime.
Remember, a prime is a number p > 1 that is divisible only by 1
and itself. We exclude 1.)

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

and so on until you write down 60. All numbers divisible by 2 are
excluded from our search for prime numbers so we start with 2, and
move every other space, marking these numbers out as we go. We
mark them out because they are divisible by 2. You stop when you

247
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reach the end of your Sieve. Observe.

2 3 ) 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
o1 o3 95 57 59

Instead of striking the numbers out we have deleted them from
The Sieve. You can just strike them out with the slash /. The
numbers that remain are not divisible by 2.

Next, we find multiples of 3. Start at 3 and count three spaces in
The Sieve until The Sieve is ended. It is important that you count
the spaces in The Sieve as well. The deleted numbers contribute to
our search for primes. Do it this way.

2 3 5 7
11 13 17 19
23 25 29

31 35 37
41 43 47 49
23 55 59

The numbers left are not divisible by 2 or by 3. The next number
left on The Sieve is 5. Delete all of the numbers and spaces in The
Sieve that are five spaces from 5, 5 spaces from that number, and
so on. Simply slash out numbers by counting every fifth number
and space, as follows.

2 3 5 7
11 13 17 19
23 29

31 37
41 43 47 49
51 53 59

The remaining numbers are not divisible by 2, 3, or 5. Do the
same for 7 (the next number on The Sieve) and arrive at
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2 3 ) 7
11 13 17 19
23 29

31 37

41 43 47
o1 o3 59

Note the disappearance of the number 49 from The Sieve. You
would have deleted 14, 21, 28, 35, and 42 but these numbers were
already deleted from The Sieve. They are also divisible by 2, 3, and
5. None of the remaining numbers in The Sieve is divisible by 2, 3,
5, or 7. Take 11 and strike out every eleventh number as so.

2 3 5 7
11 13 17 19
23 29

31 37

41 43 47
51 53 59

Nothing new is deleted. That is, because the first number en-
countered must be of the form 112. The smaller numbers are of the
form p - 11 for p = 2,3,5,7 and these numbers have been deleted
from The Sieve. The number bigger than 11 that we would first
delete is 121, which is not on our small Sieve. Thus The Sieve has
filtered out all of the prime numbers less than 60. Those primes are
the numbers left in The Sieve. They are

2,3,5,7,11,13,17, 19,23, 29, 31,37, 41, 43, 47, 51, 53, 50.

The Sieve is used to find the primes less than a given number,
but this approach is quite slow. Computers especially have a hard
time finding primes less than n with The Sieve when n is large, say
a million. It takes a more than a week of computer time to find all
of the primes less than a million.

Another method for generating primes is to use polynomials. It
was observed by Euler (circa 1750 AD) that the quadratic polyno-
mial

p(z) =41 +z + z*
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gives a list of prime values for small z. Some of those prime numbers
are given.

f(0) =41, f(1) = 43, f(2) = 47,

53,61,71,83,97, 113,151, 173,197, 223,

251,281,313, 347, 383,421, 461, 503, 547, 593, 641, 691,
743,797,853,911,971,1033, 1097, 1163, 1231, 1301,
1373, 1447, 1523, 1601.

Use your desktop computer to see that each of these numbers is
a prime number. Of course, the number p(41) will not be a prime
since it is divisible by 41, and neither is p(40) a prime. Try it and
see. Thus some of the values of p(z) are not prime numbers.

But what a mathematical coincidence. We produce many primes
from such a simple polynomial of such small degree. Why is that so?
Since mathematics does not believe in mathematical coincidence,
the question posed was to find a polynomial of small degree that
was complex enough to yield all of the prime numbers as output.

In 1977 a team of mathematicians found a polynomial that gen-
erated all of the primes when natural numbers were input. The poly-
nomial does not have one variable, it has 26 variables, and its degree
is not 2. It has degree 25. One has to wonder how James Jones,
Daihachiro Sato, Hideo Wada, and Douglas Wiens came upon this
algebraic dragon. For those wondering, that polynomial P is

P = (k+2{l—[wz+h+j—g]
[(gk+29+k+1)(h+3)+h— 2]
2n+p+qg+2—e¢)
[16(k+1)*(k+2)(n+1)2 +1— f3?

— [ (e+2)(a+1) +1—0%?

[(@® - 1)y* + 1 - 2% — [16r%* (a® — 1) + 1 — ]
[((a+u?(u —a))2 )(n+4dy) +1— (z + cu)?P?
n+l+v—y?— ~ 1) +1-m??

- [az+k+1—l—z]2

— [p+l(a—n—1)+b2an +2a —n* —2n—2) — m|

- [q—{—l(a—n—1)—+—s(2ap—+—2a—p2—2;17—2)—:1:]2

[z +pl(a — p) + t(2ap — p* — 1) — pm)*}.

I
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Try programming your desktop computer with this polynomial and
integer input values to see that this polynomial puts out negative
numbers, (to be ignored), and prime numbers only. You can also
see that this polynomial has output 2 quite a lot, and the primes
are not put out in their numerical order. But still, here is a finite
formula that puts out the infinite set of prime numbers. That is the

accomplishment.

7.2 The Prime Number Theorem

Now let’s consider
n > 0let

just counting the primes. For a given integer

m(n)

= the number of primes p < n.

Here is 7(n) for some small n. Because

2,3

are the primes less than 5,

because

2,3,5,7,11

are the primes less than 12,

and because

m(12) = 5;

2,3,5,7,11,13,17,19,23,29

are the primes less than 30,

7(30) = 10.

Using The Sieve we would conclude that

7(60) = 18.
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There doesn’t seem to be much of a pattern here, does there? And
yet mathematicians have looked for and found an important pat-
tern. It is nothing less than a closed formula for finding out how
many primes are less than a given number. To talk about this mile-
stone in mathematics we need to know a little about logarithms.

One of the fundamental constants of mathematics is the number
e (in honor of Leonard Euler who first investigated this number).
The decimal value of the number e is approzimately

e = 2.718281828459.

This number does not repeat itself and there is no end to the seeming
random pattern to the decimal values of e. One does not study the
physical sciences easily without the number e. This number, it
seems, is how nature put the universe together. For those familiar
with chemistry, the decay of radioactive elements is based on e
through the equation

A(t) = Aoe_'\t

where A, is the initial amount of material and X is a constant called
the decay constant. For those who have studied calculus, this func-
tion A(t) comes from the differential equation

A'(t) = A1),

which does not seem to mention e at all.

Now in possession of this mathematical constant we define the
natural logarithm as follows. Let a and b be nonnegative real num-
bers. Then the natural logarithm of a is denoted by

In(a).

By definition, this logarithm is the log in the base e. That is,

In(a) = b exactly when a = e’.
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Thus

In(1) = 0 because 1 = €°,
In(e) = 1 because e = €',

-1

1 1
In(=) = —1 because S=e and ,

€

In(ve) = % because /e = el/2,

In general, we have

In(e®) = z for any real number z.

Thus we have a rudimentary knowledge of In(z). With this knowl-
edge we can state the Prime Number Theorem.

The Prime Number Theorem: Given a large natural number
n)

n(n) ~ ()

Indeed, the approximation gets better as n increases without

n
In(n)
will show that these numbers are almost the same as n gets large.
That is, the limit

bound. By this we mean that a comparison between 7(n) and

im mn)  _
n—oon/In(n)
. . . A :
Consider this for a moment. A fraction 5= 1 precisely when
A = B # 0. This limit implies that —m— is very close to 1 for
n/In(n)

large n. Thus is a very good approximation for 7(n) for large

n
In(n)
natural numbers n. Being close to 7(n) is the best we can ask for
at this time.
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For example, with a little calculater use we can be sure that
7(1024)

is close to
1024 1024 1024
In(1024)  In(21°)  10In(2)

Larger numbers are sure to lead to better approximations. Thus

= 160.

71'(620)

is close to 20 2 20
e e 3

=— < —=15x3"

n(e®) ~ 20 — 20 X3
since e < 3. We can get another crude approximation of the number
of primes less than €% by noting that e? ~ 8. That is,

620 (62)10
In(e2®) ~ 20
(8)10
20
= 4x8

226

64 x (2'9)2
= 64 x 10242
64 x 10°.

Q

Il

Il

There are approximately 64 million primes less than e®. To see

how big €2 is, note that 2.7 < e so that
e® > (2.7)% = ((2.7)%)1° = (7.29)'° > (50)° = 312, 500, 000

or over 312 million.

7.3 Products of Geometric Series

We are going to discuss the most famous of mathematical problems
called the Riemann Hypothesis. This problem is intimately con-
nected with the Prime Number Theorem and involves the roots of
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an infinite sum called the Riemann Zeta Function. What we do is
probably the way that Leonard Euler went about the problem.

The sigma notation is shorthand for writing down sums. It is
especially useful when writing down infinite sums. It takes the
guesswork out of seeing which pattern is meant by .... ¥ means
“add these terms up.” For example,

2
in=1+x+x2
i=0

and, more importantly, the geometric series 1 + z + 2% + ... with
infintely many terms can be written

oo
Zxk=1+x+x2+....
k=0

We can even sum over two or more variables if we are careful. Thus,
assuming that ¢, 7 > 0, we have

=3 = Pra+2%y+2®
= 2 +aly+zy® + 4~

Another example is

Z gy = Py AR
i+j+k=3 + x2y + 2%z + v’z + e + 22z + z2y
+ zyz.

One more detail before we begin our multiplication. The degree
of a term is the sum of the exponents (implied or stated) in that
term. Thus

24P
has degree
24+3+4=09,
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while degree 3 terms look like this.
23 2%y, zy2.

We discuss the product of polynomials by considering the terms of
different degree in the polynomial. There is a pattern here that will
help us to multiply geometric series together.

Consider the identity

Q+z)1+y) =1+ (z+y)+zy.

The term z + y comes from the fact that we have multiplied all of
the degree 1 terms by degree 0 terms (=constant terms).

l-z+y-1=z+y.

The term zy comes from the fact that we have multiplied together
all those terms whose product has degree 2. There is only one such
product in this example.

-y =zy.
Let us do the same thing for the identity

Q+z)1+y)(1+2) = 1

+ (z+y+2)
+ (zy+yz+zz)
+  (zy2).

The term z + y + z comes from multiplying together those terms
whose degree is 1:

l-z4+1.y+1-2=x+y+2

The degree 2 term is found by multiplying together all those terms
in this example whose product has degree 2.

Ty +yz +zx2

is the result. The degree 3 term is from the only product that yields
a degree 3 term:
TYz.
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Let us try this analysis one more time by considering the identity

I+z+2)(1+y)(1+2) = 1
+ (z+y+2)
+ (zy+yz+z2+2?%)
+ (z%y + 22 + 1Y2)
+ (2%y2).

The identity was found by using foil over and over again. Here is
another way to find this identity.

The degree 0 term is found by multiplying together all the terms
that add up to a degree 0 term. There is just one:

1-1-1=1.

The degree 1 term is found by multiplying all of the terms to-
gether that result in a degree 1 term:

l'z+1.-y+1-z2=z4+y+ 2

The next would be the degree 2 term. Multiply all of the terms
together that result in degree 2. They are

xy+yz+xz+x2.

The degree 3 term is next. The products resulting in degree 3
are degree 1 times degree 2 or three degree 1 terms together. They

are
2

zy, 2%z, Yz
so the degree 3 term is their sum.

x2y + 222+ TYz.

The degree 4 term is the only product that results in degree 4,
namely, degree 2, degree 1, and degree 1:

z2yz.

This completes the product.
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So when multiplying we ask which products result in a degree 0
term, then a degree 1 term, then a degree 2 term, then a degree 3
term, and so on until the terms in the product are all used.

We call an infinite sum

l+z+z2+2°+...

a geometric sertes. This geometric series is a number when —1 <
z < 1 and only when z is in this domain, so it is important that we
do not allow z to stray from this interval of convergence. We will
multiply two geometric series together using the above pattern.

G=(+z+z2°+.. ) 1+y+2+...).
Operating as we did above, the degree 0 term is
1-1=1

and the degree 1 term is formed by multiplying degree 0 and degree
1 terms together. The result is

lry+z-1=2+y.
The degree 2 term is next. Combine all terms together whose degree
is 2:
1.2 +z-y+22 1 =2+ zy+ 12
The degree 3 term is found by counting degrees.
P4z 422 y+28 1=+ 2% + oy + 42

One more, the degree 4 term.

= 2% + 2% + 22y + 2y + o

We have thus found the first 4 terms of the product G.
G =1

(z +y)

(2® + =y +9°)

(z® + 2%y + zy? + ¢°)

(

_+_
_+_
_+_
+ (z* + 2Py + 2% + 2y’ + oY)



7.3. PRODUCTS OF GEOMETRIC SERIES 259

In general, we can say that the nth term in G is found by adding
together all of the products whose sum is n. In terms of the sigma
notation we have the following.

The nth term of G = Z 'y

itj=n

It is worth noting that if (1+z+2?+...)and (1+y+y>+...)
converge (i.e., if —1 < z,y < 1) then the product G also converges.
However, as we will show presently, in case there are infinitely many
geometric series multiplied together, then the product of them need
not converge to a number.

This is how we extend our products from two to three or more
geometric series. Use the sigma notation to write down a geometric
series. The rest of the notation is due to Isaac Newton. Let

o
A = zai=1+a+a2+...,
=0

B = V=1+b+b2+...,

WE

<.
I
=)

C = F=1+c+ct+...,

™8

E
1

0

be an infinite implied list of geometric sums. The product

'=A-B-C- ...
is the infinite series whose nth term is
nth term of I’ = Z (a'b'ck..).
itjtk+..=n
For example, the degree 0 term is from sums ¢+ j+k+... =0,
which happens only when i = j =k = ... = 0. Thus the degree 0

term is
1.
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The degree 1 term of T is the sum of all terms whose exponents add
to 1. That is, the degree 1 term is the infinite sum

b+l =a4+bdc+....

The degree 2 term, which is all we are going to do, is formed by
taking products of degree 1 terms like ab or bc, and products of
square terms with the only degree 0 term that exists here, 1. The
degree 2 term is the infinite sum

> wy

r+s=2

In this case z,y € {a,b,c,...}. Some of the terms in the degree 2
term of the product I' are

Zx’ys = a®+b 4+
r+5=2
4+ ab+bct+ac+....

Somewhere in the product I is a factor
D=>) d=1+d+d+
£=0

It also contributes to the infinite sum that is I". Terms like d°, abd?®
and a?c3d” occur when we write down I in all of its detail. The
sigma notation helps to simplify our representation of I.

I'(a,b,c,. Z Z (a’bic*..)

n=0 i+j+k+..=n

We now have enough algebra to understand a little about the
Riemann Zeta Function.
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7.4 The Riemann Zeta Function

In this section, we investigate a special value of I' called the Rie-
mann Zeta Function. We will replace a, b, ¢, ... with specific val-
ues or numbers, and the resulting product will be untangled. Our
stopping place will be what is considered to be the most important
mathematics problem of the last 150 years. It is called the Riemann
Hypothesis.

Let s > 1 be a real number. As in the previous section let us

1
substitute 7 for a in A, and call the result

1 1 1 1
F =l tomtamt

A
( 28 223 233

Let b = % in B and write

1 1 1 1
=14+ttt

B ( § ) 3s 323 333

1
Let ¢ = = in C and write

1 1 1 1
Cl=)=1+—=4+ =+ = +....
(53) 5s+52s+533+
Continue inductively, forming reciprocals of s-powers of prime num-
bers

1
P
and substituting them into the associated geometric series:
1 1 1 1

Each geometric series 1 + z + 2% + ... can be written in closed
form as

1
l4z+22+... =
1—2

1
when —1 <z < 1. For primes p, —1 < — <1, s0
P

1 11 1
D) =14+ +...= —7.
p p* p%® -~
ps
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Making this substitution for A, B, C, ... yields the equation

1 1 1 1 1 1
F(?)?a?)"') - A(?)B(§)C(§)

- I 1
N 1
all primes p 1- -

where the symbol
all primes p
means to take the product over all primes p. The first little bit of

this formula is
1 1 1

X221
28 38 58
and continues on indefinitely, one factor for each prime.
This infinite product is called the Riemann Zeta Function:

= I —r

all primes p 1- -

This function ((s) is defined at all complex numbers except s = 1.
There is a deep connection between the roots or zeros of {(s) and the
number of primes m(n) less than n. The details of that connection
are beyond the scope of this book, so we will just write down certain
facts about ((s).

We can just as easily use complex numbers as real numbers in
¢(s) so we do just that. Let

s =u-+1v,

where u and v are real numbers, and i = v/—1, the imaginary unit.
The next question that we come upon is simple enough. You have
often been asked to find the zeros of a polynomial function, and
that is what we ask here. What are the zeros of the Riemann Zeta
Function ((s)?

The Riemann Hypothesis: The zeros of the Riemann Zeta Func-

1
tion have real part 5 That is, if {(s) = 0 and if s = u + iv then

1
u=-.
2
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As of March, 2006 an answer to this question has escaped the
most careful of analysis. All of the zeros that have been found

1 s
satisfy u = 5 but that does not preclude the possibility that there
might be a very large number s = u + iv out there somewhere that

1
is a zero of ((s) but that has u # 3 The best computer models
show that if ((s) = 0 and if u < 10! then u = % But this does not

1
prove that all zeros of ((s) have real part 3

There is a story that circulates among the graduate students
during the coffee hour at mathematics departments in universities
all over the world. It seems that the Devil came to Riemann and
said that he would give him his heart’s desire for his soul. You know
the contract. It has become immortal since we read The Devil and
Daniel Webster. Riemann, being mathematically astute, said to the
Devil that he would give up his soul provided that the Devil could
give Riemann a correct proof of the Riemann Hypothesis in one
year. The Devil agreed, and vanished in a puff of smoke. Riemann
went about his work. One year later to the day, the Devil returned
to Riemann’s office. He sadly announced that despite using all
of the resources in his realm he was unable to solve the problem
Riemann had given him. “But,” says he, “if I could just prove this
one lemma.” Moral of the story is that there are no world class
mathematicians in hell.

Let us try a more traditional form of {(s). We can realize {(s)
as an infinite sum as long as we begin with a real number s > 1.
Recall that ((s) is a product of geometric series

1 1 1

() = A(5) - B(3) - C(5) -

. . . 1 .
where there is one geometric series D(— ) for each prime number p.

The terms of the series {(s) are 1, the sum of the reciprocal primes

1
> L

primes p
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and the sum of the degree 2 terms

1 1
ZFWLZ

T
primes p primes p # q (pQ)

The higher degree terms are just too complicated to write down
here.
We approach the sum from the opposite direction.

Consider the sum -

1

ns’
n=1

We could add up these numbers by taking n = 1,2,3,... or we
could add them up by taking their prime factorizations. Add up 1
and the numbers that have just one prime dividing them.

1+ Z
primes p

Next, take the numbers that are of the form p? or that have exactly
two primes dividing them. Such an n would look like

n=pg
for two primes p # ¢:

1 1 1
Y liy Loy

e
primes p primes p primes p # q (pq)

These sums are the initial sums of ((s). We have therefore argued
that

(s) = > —. (7.1)

That is, the infinite product {(s) is an infinite sum.

A most unusual mathematical coincidence occurs here. Remem-
ber that I have warned you about manipulating infinite sums that
do not converge. Well here is a good example of that. The geometric
series

1 1 1

1
DE)=1+=+45+—=+.
p p p P



7.5. REAL NUMBERS 265

converges since

1
-1< ; < 1 for primes p.

Does the infinite product

of convergent geometric series converge? No. You see, if we use the
infinite series representation (7.1) of {(s), we see that

V=>)

n=1

b

S|

which is the divergent harmonic series. That should raise a few
eyebrows. Certain infinite products of numbers do not converge. In
this way, infinite products of numbers are similar to infinite sums
of numbers. Some converge, some diverge.

7.5 Real Numbers

The previous section shows us how mathematicians handle infinite
sets of integers in a finite manner. In this section, we will see how
mathematicians handle the continuum of the real numbers in a finite
manner. For example, there is an infinite set called a sequence. An
example of a sequence is

N
el =
Sl
ol

The sequence is infinite but it takes place in a finite interval [0, 1].
Moreover, there is a number 0 such that each open neighborhood of
0 contains infinitely many of the terms in this sequence. An open
neighborhood of 0 is an open interval (—a, a) that contains 0. Other
open neighborhoods of 0 are (—1,1), (=2,2), and (3}, 3).

Another sequence is formed by allowing

(="
271

Ipn =
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for each integer n > 0. The first few terms are

1 =11 -1

I,T,Z,‘é—,.-..
They oscillate between positive and negative numbers. The entire
sequence is contained in the finite interval [—1,1]. Moreover, there
is a number 0 not in the sequence with a special property. Given
any open neighborhood of 0, say, (—a,a), there is a point beyond
which all of the terms in the sequence are in this neighborhood.
That is, there is an integer N > 0 such that

(=n"
271

€ (—a,a) for all integers n > N.

An open neighborhood of 0 is like having an infinite queue of
people and saying that each of them lives on the same block of the
city. A smaller open neighborhood of 0 would be one home. We
would be saying that almost all of these people live in the same
home. An even smaller open neighborhood would be a room in the
home. All but finitely many of these people live in the same room.
[ won’t get into the social implications that must come up when the
open neighborhood of 0 is a chair in the room.

Let us be a bit more precise. A sequence in the closed interval
[-1,1] is a function f : N — [—1, 1] from the natural numbers into
[=1,1]. The images of the function or sequence is usually denoted
with a subscript as in

f(n) =z, foreachn € N.

For instance, f(1) = z;1, f(2) = x9, and so on. The sequence with
n

terms is given by the function f : N — [—1, 1] with rule

271

Let us write down an arbitrary sequence in [—1, 1].

Zo, L1, X2, - ..,
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of different terms. This is an infinite subset of [—1,1] so there
should be something finite that we can say about the sequence.
Cut the interval in half. Is it possible that both halves contain a
finite number of sequence elements in them? No. That would mean
that the sequence is finite, which it is not. Thus one half contains
an infinite number of sequence elements. So let I; be the half of
the interval that contains infinitely many sequence elements. Now
cut [; in half. As we have argued above, one half must contain
infinitely many elements of the sequence since otherwise I, contains
only finitely many sequence elements, a contradiction. Hence we let
I, C I, be the half that contains infinitely many of the sequence
elements. Continue in this way, constructing a chain of sets

LDOLD...,

each term half as big as the previous term. The lengths of the
intervals form a sequence
111
57 ?, ?, PR
Observe that these lengths converge or approach 0 as n is allowed
to grow.

Now, we can write

1,

It = (a, bx) for some real numbers a; < bg.
In this case we have a sequence of real numbers
a) <az<az<...<by<by <b. (7.2)

Then the sequence {a1, a2, a3, ...} is a sequence bounded above by
by. That is, there is only one direction for the sequence, namely,
upward, and there is a number larger.than all of the sequence ele-
ments. We say that {a, I n € N} is a bounded monotonic sequence.
One of the primary properties of the real line is that such a sequence
{an | n € N} has a limit. That is, there is a number L such that
each open neighborhood O of L contains all but finitely many of
the a,. Pictorially we have

Almost all sequence elements are
in this open neighborhood of L.

L
Qo Gz( a3 Gn | Gna1 G4

N T

a)

Aot
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The picture shows us that almost all (i.e., all but a finite number)
of the sequence elements a, are in the open neighborhood O of L.
The sequence {b, |n € N} has the same property around L. Thus
given an open interval O about L there is a point where

(an,bp) C O

for almost all of the open intervals (a,,b,) = I,,. Since I, is chosen
so that I, contains infinitely many elements of {z, I n € N}, we see
that O contains infinitely many elements in {z, l n € N}. We call
such a point L a cluster point of {z, | n € N}.

At this point we summarize.

Theorem 7.5.1 [Bolzano-Weierstrauss] Let {z, |n € N} C
[-1,1] be a sequence. There is a cluster point L in [—1,1] for the
sequence.

What did we know about the sequence {z, I n € N}? Only that
it was a sequence in [—1,1]. That is precious little to know about
a sequence before we determine that it has a cluster point, a point
that is very close to infinitely many of the elements in the sequence.
Very little hypothesis gave us a powerful result. That is one of the
alms or goals of mathematical research. When less gives us more
we know that we are onto something special.

Let me share some stories surrounding Karl Weierstrauss (circa
1880 AD). Unlike many mathematical giants Karl did not start out
as a strong mathematics student. Karl was a late bloomer. He
spent his college life in pursuit of personal joy. Most of his young
life was misspent fencing and quaffing beers in bars. His pursuit of
fun distracted him from his studies. He was a party animal. Because
of his party attitude he barely graduated college. Upon graduation
he was denied a job at the local institutions and accepted a job
instead teaching at an elementary school. It was here that he hit
upon the sense of rigor and creativity that we remember him for
today. In a change of image he set new standards for mathematical
rigor that are still in effect more than 100 years later. Just as curious
is the fact that in contrast to his earlier work, Karl’s lectures and
teaching are renowned for the care taken in their presentation and
preparation. His gifts to his students are another unique quality for
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Karl. He would begin a mathematical gem and then allow a student
or a colleague to finish it, thus giving them the credit. This is a
very generous and quite uncommon behavior. Mathematics cannot
understate Karl’s foundational contributions to teaching, analysis,
and rigor in mathematics.

Let us use this kind of recursive argument to hunt tigers on the
Arabian Desert. Your job is to find a Tiger in the otherwise barren
Arabian Desert. You have all of the material you need, so you first
erect an impassible fence around the Desert. Call the contained
area S;. You divide S) into two equal regions using the impassible
fencing. To find the Tiger, you send men out into each half with
orders to engage the Tiger in a fight. The men on one side return
saying they could not find the Tiger and the men on the other side
do not come back. Call their side S5. It contains the Tiger. Divide
Ss in half using impassible fencing and send the men out again. The
side S5 is the one whose men do not return. The Tiger is there. We
have started an induction, constructing regions

S1D0985D25D...,

whose areas are given by a sequence

1>1>1>1>
27 27 287 7

that becomes vanishingly small. Eventually we will construct a

. . . .1 .
region S, that contains the Tiger and whose area is ore This power

1
of 2 will be so small that we can see the Tiger in the region S,. At

this point we can say that we have corralled the Tiger.

Some might say that we have no way of knowing that S,, is small
enough to cage the Tiger. There is less than 10'2 square miles in
the Arabian Desert, so on the 41st attempt to find the Tiger we
have a region of area

1 12 1 4
w107 = =55(1000)
< L (1024)"

240
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1 10\4
= 50(2")

9—40 40

= 1 mile.

Another few fences and we have corralled the Tiger.



Chapter 8

Logic and
Meta-Mathematics

8.1 The Collection of All Sets

Let

denote the Collection of all Finite Sets. Since F contains {1}, {1,2},
{1,2,3}, ..., the collection F is infinite. Put another way:

The collection F of all finite sets is not finite.

While this is not a surprise, it prepares us for similar ideas concern-
ing deeper implications about more abstract collections.

Example 8.1.1 The following is a classic example due to Bertrand
Russell. Let

C

be the Collection of All Sets. We will prove the following.

271
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Theorem 8.1.2 C is not a set.

Proof: Assume for the sake of contradiction that C is a set.
Then C has the rather unsettling property

CeC.

That is, C is an element of itself. This is like saying that a bag
of sand is itself a grain of sand (bag and all), that this book is
contained on one page of this book, or that a crowd of people is a
person. And yet, although unsettling, C € C is a consequence of
the assumption that C is a set. This unsettling statement will lead
us to a wonderful contradiction. Picture (6.5) will help with the
argument that follows.

The Collection of All Sets C (8.1)
Empty
.C overlap o 0
w w
S € S for these sets S S ¢ S for these sets S

To produce a contradiction we will do something that may strike
you as familiar. Define a set W = { sets S| S € S}. That is,

W = the set of all sets S that contain themselves as an element.

The complement of W

W = {setsS|S ¢S}

By our assumption C is a set such that C € C so that C € W.
Thus W is nonempty. The empty set () satisfies @ € § so § € W'.
In fact, most sets S satisfy S & S so W' is a nonempty set.
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We observe that given a set S either S € S or S € S so either
S e WorS e W but not both. Thus W and W' are sets. Let us
determine where W' resides.

Assume that W' € W'. Then, because W is the set of all sets S
such that S € S, we must have W' € W. This is a contradiction to
the fact that no set can be in both W and W, so our assumption
is in error.

Alternatively, assume that W' & W'. Because W' is the set of
all sets S such that S ¢ S, we must have W' € W', This is another
mathematical impossibility.

Therefore W' is not a set, which is clearly a contradiction to our
choice of W and W'. This shows us that our assumption that C is
a set is in error. We conclude that

C is not a set.

This is a good time to demonstrate that card({e}) is not a set
since it contains a copy of C: it contains {X} for each set X.

Now that we have established that C is not a set, here are several
mind expanding shockers.

Theorem 8.1.3 There are no functions f : C — B for any sets
B.

Proof: Functions are defined on sets and sets only. Since C is
not a set we cannot define a function on it.

Theorem 8.1.4 C has no cardinality.

Proof: Suppose to the contrary that C has cardinality X. Then
there is a set B and a bijection f : C — B such that card(B) = X.
This is contrary to the previous theorem. This contradiction shows
us that C has no cardinality.

Even though C has no cardinality there is a more philosophical
way of seeing that C is larger than any mathematical construction.
Let A be a set. Form the subcollection

A= {{z}|z e A}.
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Then A is a set and
card(A) = card(A).
Furthermore,
A is a subcollection of elements in C

so that in an intuitive but compelling way

each set A is smaller than C.

If we did not know about Theorem 8.1.4 we might be tempted to
say that the cardinality of C is larger than every cardinality. In
pictures

0...8 2% 227 g e N eee size of C
SN | |

8.2 Other Than True or False

Have you ever engaged in logical games in which you had to decide
who was telling the truth given some information or statements
made by the people involved. My favorite is the classic chestnut
The Hidden Tiger Puzzle. It goes like this. You are on an island
where the island ruler askes you to make a choice. Behind one door
is a Golden Key that will make you the ruler of the island. Behind
the other door is a yellow and black striped tiger who will eat you
if the door is opened. The two doors are guarded by two men who
know where the Golden Key is located. You may ask one question
of the guards in order to find the Golden Key. Here is the twist.
One of these guards tells the truth all of the time and the other one
lies all of the time. What one question can you ask that will lead
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you to the Golden Key? The answer to this question is given on
page 281.

The answer to The Hidden Tiger Puzzle relies on the fact that
most statements have exactly one of two logical states. Namely, they
are true or false, but not both. No third alternative is considered.
In this section we will give examples of statements that will lead us
to conclude that certain statements in the English language have a
third possible logical state.

Example 8.2.1 [5] We will show that there is a word W in the
English language such that the sentence

“W is a W word.”

is neither true nor false. We conclude that it must possess some
alternative logical state.

Proof: Assume for the sake of contradiction that the statement
“W is a W word” is either true or false, and not both. We will
say that a word W is self-descriptive if the statement “W is a W
word” is true. The word W is said to be non-self-descriptive if the
statement “W is a W word” is false. By our assumption, a word W
is either a self-descriptive word or it is a non-self-descriptive word
but not both.

For example, since the word pentasyllabic has five syllables the
sentence

“Pentasyllabic is a pentasyllabic word.”

is true. Thus pentasyllabic is a self-descriptive word. This demon-
strates that there are self-descriptive words. There are many non-
self-descriptive words. For example, since monosyllabic means hav-
ing one syllable, the sentence

“Monosyllabic is a monosyllabic word.”

is false, whence monosyllabic is a non-self-descriptive word.
So what kind of word do you think non-self-descriptive is? Make
your guess and then read on.
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Non-self-descriptive is the contradiction we seek. We will show
that the sentence

NSD “Non-self-descriptive is a non-self-descriptive word.”

is neither true nor false, thus contradicting our assumption that the
statement “W is a W word” is either true or false but not both.

Suppose that statement NSD is true. By the definition of non-
self-descriptive sentence NSD must be false. This is not possible
as our initial assumption says that this sentence can have only one
logical state.

So it must be that NSD is false. By the definition of non-self-
descriptive the word non-self-descriptive is a non-self-descriptive
word. That is, sentence NSD is true, contrary to our initial as-
sumption.

Since each logical state leads us to a contradiction we conclude
that the logical state of sentence NSD is something other than true
or false. We have found a simple statement that seems to suggest
true and false. These statements are also quite simple, leading us to
believe that this kind of counterintuitive logical behavior is actually
quite common.

Consider what the above example does for the set of words in
the Engish dictionary. Let S denote the collection of self-descriptive
words and let NS denote the collection of non-self-descriptive words.
According to the above example S and NS do not account for all
of the words in the English language. There is a third collection:

O = words W for which “W is a W word” has a logical state
other than true or false, including the nonsense state.

If we wish to say that a word W is not in S we will say that

We cannot say that W is a self-descriptive word.
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This kind of wording allows for the fact that W might be in NS
(non-self-descriptive words) or it might be in O (other than self-
descriptive or non-self-descriptive words).

What went wrong here? Why should the simple statement NSD
give us so much trouble regarding its logical state? The number of
words for which statement NSD is true is not large. It is something
you might program your desktop computer to find if it could deter-
mine when a word was self-descriptive or non-self-descriptive. Just
download the CD that contains the entire Oxford English Dictio-
nary and perform a search. Since this CD is finite the number of
words for which statement NSD is true is finite. However, there is a
word N such that the statement “N is an N word” is neither true
nor false. Its logical state is some unknown third alternative state.
It is possible that the missing third state is that the statement NSD
has no logical state whatever. We will not pursue the matter here.

Picture (8.2) of the English dictionary might help envision what
we are talking about.

Dictionary of the English Language (8.2)
O
Other than
S NS

Self-descriptive words Non-self-descriptive words
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The following classic story is another example of a statement
whose logical state is neither true nor false. We will update the
story.

The Epimenides Paradox: A philosophy professor named Epi
walks into a room of college professors and announces that

“I cannot tell the truth. I am lying.”

Let us try to determine the logical state of Epi’s simple sentence /
am lying.

Assume that [ am lying is a true statement. This is contrary to
the fact that Epi cannot tell the truth. This is a contradiction in
logical states, so that I am lying is not a true statement.

Alternatively, we assume that I am lying is a false statement.
Then Epi is telling the truth, contrary to the fact that she cannot
tell the truth. This contradiction shows us that I am lying is not a
false statement.

Since it is neither true nor false we conclude that the logical
state of I am lying is some kind of alternative third logical state.

Try Epi’s sentence on your friends. Establish yourself as some-
one who cannot tell the truth and then announce / am lying.

A diagram of English might help you understand how we have
partitioned the statements in the language. See the next page.

The point in the previous two examples is that there are sen-
tences in the English language whose logical state cannot be de-
cided. We suggest that their truth state is some logical state that
is other than true of false.

Here is another example of alternative logical states that will
really mess with your mind.

Example 8.2.2 Consider the following two sentences.

#1. Sentence 2 is false.
#2. Sentence 1 is true.
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Let us investigate the logical state of Sentence #1.

Statements of the English Language (8.3)

Other Than True or False
Statements

True Statements False Statements

Begin by assuming that Sentence #1 is true. That is, Sentence
2 is false is a true sentence. Then sentence #2 is false, or in other
words Sentence 1 is true is false. It must be then that sentence #1
is false. This is a contradiction in logical states for sentence #1 so
that our assumption is incorrect.

Alternatively we assume that sentence #1 is false. That is,
Sentence 2 is false is a false sentence. I leave it to the reader to
produce the contradiction in logical states for sentence #1.

We conclude that the logical state of sentence #1 is some alter-
native third logical state.

Statements #1 and #2 are not terribly complicated and yet they
quickly lead us to a difficult logical situation. We conclude that not
all of our language can be analyzed with traditional binary logic.
That is, we cannot investigate the language without recognizing the
existence of simple statements whose logical states are something
other than true or false.

Investigate the logical state of statement #1 in the following
exercises.
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(1)
#1. Sentence 2 is false.
#2. Sentence 1 is false.
(2)
T
#1. Sentence 2 is true.
#2. Sentence 3 is true.
#3. Sentence 1 is true.
(3)
#1. Sentence 2 is false.
#2. Sentence 3 is false.
#3. Sentence 1 is false.
(4)
#1. Sentence 2 is false.
#2. Sentence 3 is false.
#3. Sentence 1 is true.
(5)
#1. Sentence 2 is false.
#2. Sentence 3 is true.

#3. Sentence 1 is true.
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(6)

#1. Sentence 4 is false.

#2. Sentence 3 is true.

#3. Sentence 2 is false.

L #4. Sentence 1 is true.
(7)

#1. Sentence 4 is false.

#2. Sentence 3 is true.

#3. Sentence 2 is true.

#4. Sentence 1 is true.
(8)

#1. Sentence 4 is false.

#2. Sentence 3 is false.

#3. Sentence 2 is true.

#4. Sentence 1 is true.

The solution to the Hidden Tiger Puzzle: To find the
door that contains the Golden Key choose one of the guards. It
doesn’t matter which one. Ask him, Which door would the other
guard say that the Golden Key is behind?. That is one question.
Then open the other door. That is where you will find the Golden
Key.

Now here is how it works. Label the guards 1 and 2. Suppose
you ask the one question of guard 1. If he lies all of the time then
guard 2 tells the truth all of the time. Guard 1 will change guard
2’s answer from the truth to a falsehood. Guard 1 will answer with
the wrong door, the door hiding the Tiger. Open the other door.

On the other hand, suppose guard 1 tells the truth all the time.
Then guard 2 lies all the time. Guard 2’s answer to the question
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would be the door that does not have the Golden Key behind it.
Guard 1, being the one who tells the truth, will answer with guard
2’s answer, which is the door that hides the Tiger. Open the other
door.
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